\(0\le a;b;c\le3\)và\(a+b+c=4\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Gỉa thiết đã cho có thể viết lại thành

(a/2)2+(b/2)2+(c/2)2+2.a/2.b/2.c/2=1

Từ đó suy ra 0<a/2,b/2,c/2≤1.

Như vậy tồn tại A,B,Cthỏa A+B+C=πA+B+C=r và a/2=cosA,b/2=cosB,c/2=cosC.

Từ một BĐT cơ bản cosA+cosB+cosC≤3/2

ta có ngay a+b+c≤3

<=> a^2+b^2+c^2 =< 3^2 =< 9

31 tháng 10 2017

ta có:\(0\le a\le3\Rightarrow a\left(a-3\right)\le0\)

\(\Rightarrow a^2-3a\le0\)

C/m tương tư ta đc: \(b^2-3b\le0\)

                                  \(c^2-3c\le0\)

\(\Rightarrow a^2+b^2+c^2-3\left(a+b+c\right)\le0\)

\(\Leftrightarrow a^2+b^2+c^2\le3.4=12\) (vì a+b+c=4)

11 tháng 11 2018

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)

Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)

=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)

=>a2+b2+c2 \(\le\)

Dấu "=" xảy ra <=> (a+1)(  a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị 

23 tháng 7 2016

Ta có \(a\ge0,a-3\le0\)nên  \(a\left(a-3\right)\le0\)

\(\Rightarrow a^2-3a\le0\)\(\Leftrightarrow a^2\le3a\)

Tương tự ,  \(b^2\le3b,c^2\le3c\)

\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)=12\)

       max A =12 \(\Leftrightarrow\hept{\begin{cases}a=3\\b=2\\c=1\end{cases}}\)hoặc\(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)hoac\(\hept{\begin{cases}a=1\\b=3\\c=2\end{cases}}\)

\(\Leftrightarrow\)trong a , b , c có một số bằng 3 , một số bằng 2 , một số bằng 1

29 tháng 12 2019

Rút: \(c=-\left(a+b\right)\) ta cần chứng minh:

\(a^2+b^2+\left(a+b\right)^2< 2\) với \(-1< a\le b\le-\left(a+b\right)< 1\)

Từ \(-1< a\le b\le-\left(a+b\right)< 1\Rightarrow-1< a+b< 1\)

Xét hiệu: \(\left(a+b\right)^2-1=\left(a+b-1\right)\left(a+b+1\right)< 0\).Vậy \(\left(a+b\right)^2< 1\)

Ta có: \(VT=a^2+b^2+\left(a+b\right)^2=2\left(a+b\right)^2-2ab< 2\left(a+b\right)^2< 2.1=2\)

Ta có đpcm.

Is that true?