Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho AB và CD là hai đoạn thẳng song song và bằng nhau, A'B' và C'D' là các hình chiếu của chúng trên cùng một đường thẳng. Chứng minh rằng A'B' = C'D'
GIÚP MK VS NHA. CẢM ƠN MỌI NGƯỜI NHIỀU Ạ
@soyeon_Tiểubàng giải
1 câu trả lời
Toán lớp 7 Ôn tập toán 7
Từ A hạ đường vuông góc với BB' tại H
Từ C hạ đường vuông góc với DD' tại K
Gọi I là giao điểm của CD và BB'
Dễ thấy BB' // DD' do cùng _|_ A'D'
=> BID = IDK (so le trong)
Lại có: ABI = BID (so le trong)
=> IDK = ABI
Xét t/g ABH vuông tại H và t/g CDK vuông tại K có:
AB = CD (gt)
ABH = CDK (cmt)
Do đó, t/g ABH = t/g CDK ( cạnh huyền - góc nhọn)
=> AH = CK (2 cạnh tương ứng) (1)
Có: AH // A'B' ( cùng _|_ BB')
AA' // B'H ( cùng _|_ A'D')
=> AH = A'B' ( tính chất đoạn chắn) (2)
Tương tự ta cũng có: CK = C'D' (3)
Từ (1); (2) và (3) => A'B' = C'D' (đpcm)
Bài này có trong câu hỏi tương tự bạn nên tìm nhé :)))
Mình dán lên đây cho bạn xem cho tiện

a: Xét ΔABC có
N,M lần lượt là trung điểm của AB,AC
=>NM là đường trung bình của ΔABC
=>NM//BC và \(NM=\frac{BC}{2}\)
Xét ΔOBC có
P,Q lần lượt là trung điểm của OB,OC
=>PQ là đường trung bình của ΔOBC
=>PQ//BC và \(PQ=\frac{BC}{2}\)
Ta có: NM//BC
PQ//BC
Do đó: MN//PQ
Ta có: \(MN=\frac{BC}{2}\)
\(PQ=\frac{BC}{2}\)
Do đó: MN=PQ
b: Xét ΔMAB và ΔMCE có
\(\hat{MAB}=\hat{MCE}\) (hai góc so le trong, AB//CE)
MA=MC
\(\hat{AMB}=\hat{CME}\) (hai góc đối đỉnh)
Do đó: ΔMAB=ΔMCE
c: Gọi X là giao điểm của AF và BC
Xét ΔABC có
BM,CN là các đường trung tuyến
BM cắt CN tại O
Do đó: O là trọng tâm của ΔABC
=>AO cắt BC tại trung điểm của BC
=>X là trung điểm của BC
Xét ΔABC có
AX là đường trung tuyến
O là trọng tâm
Do đó: AO=2OX
mà AO=OF
nên OF=2OX
=>X là trung điểm của OF
Xét ΔABC có
BM là đường trung tuyến
O là trọng tâm
Do đó: BO=2OM
Xét tứ giác BOCF có
X là trung điểm chung của BC và OF
=>BOCF là hình bình hành
=>CF=BO=2OM

a b M N P Q
a)Kẻ NP
Ta có:
a//b
=> MNP=NPQ(so le trong)
Xét \(_{\Delta MPN}\) và \(\Delta QNP\) có:
MNP=NPQ( cmt)
NP là cạnh chung
MN=QP
=)\(\Delta MNP=\Delta QNP\)(C-g-C)(1)
=>MPN=QNP(hai cạnh tương ứng)
Mà hai góc này ở vị trí so le trong => MP//NQ(dpcm)
b) Từ (1) => MP=NP(dpcm)
CHÚC BẠN HỌC TỐT!
a) ta có a//b suy ra MN//PQ suy ra góc MNP = góc NPQ (hai góc so le trong)
xét tam giác MNP và tam giác QPN ta có
MN=QP
góc MNP= góc QPN
NP:cạnh chung
suy ra tam giác MNP= tam giác QPN(c.g.c)
suy ra MP=NQ(hai cạnh tương ứng)
b)ta có tam giác MNP= tam giác QPN suy ra góc MPN=góc QNP(hai góc tương ứng)
mà hai góc này ở vị trí so le trong suy ra MP//NQ(đpcm)