Cho A,B duong. CMR 3/a+2b + 3/b+2a > 4/a+b

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Với 2 số

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Đẳng thức xảy ra  \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

Với 3 số

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Đẳng thức xảy ra  \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

31 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(\frac{3}{a+2b}+\frac{3}{b+2a}=3\left(\frac{1}{a+2b}+\frac{1}{b+2a}\right)\ge\frac{3.\left(1+1\right)^2}{a+2b+b+2a}=\frac{3.4}{3\left(a+b\right)}=\frac{4}{a+b}\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b\)

31 tháng 7 2017

cho công thức nhé

19 phương phap chứng minh bất đẳng thức

  1. 1. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com PHẦN 1 CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa  A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1
  2. 2. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com PHẦN II CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC Phương pháp 1 : Dùng định nghĩa Kiến thức : Để chứng minh A > B. Ta lập hiệu A –B > 0 Lưu ý dùng hằng bất đẳng thức M 2 ≥ 0 với∀ M Ví dụ 1 ∀ x, y, z chứng minh rằng : a) x 2 + y 2 + z 2 ≥ xy+ yz + zx b) x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz c) x 2 + y 2 + z 2 +3 ≥ 2 (x + y + z) Giải: 1 a) Ta xét hiệu : x 2 + y 2 + z 2 - xy – yz – zx = .2 .( x 2 + y 2 + z 2 - xy – yz – zx) 2 = 1 2 [ ] ( x − y ) 2 + ( x −z ) 2 + ( y − z ) 2 ≥ 0 đúng với mọi x;y;z ∈ R Vì (x-y)2 ≥ 0 với∀x ; y Dấu bằng xảy ra khi x=y (x-z)2 ≥ 0 với∀x ; z Dấu bằng xảy ra khi x=z (y-z)2 ≥ 0 với∀ z; y Dấu bằng xảy ra khi z=y Vậy x 2 + y 2 + z 2 ≥ xy+ yz + zx. Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu: x 2 + y 2 + z 2 - ( 2xy – 2xz +2yz ) = x 2 + y 2 + z 2 - 2xy +2xz –2yz = ( x – y + z) 2 ≥ 0 đúng với mọi x;y;z ∈ R Vậy x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz đúng với mọi x;y;z ∈ R Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu: x 2 + y 2 + z 2 +3 – 2( x+ y +z ) = x 2 - 2x + 1 + y 2 -2y +1 + z 2 -2z +1 = (x-1) 2 + (y-1) 2 +(z-1) 2 ≥ 0. Dấu(=)xảy ra khi x=y=z=1 Ví dụ 2: chứng minh rằng : 2 2 a2 + b2  a + b  a2 + b2 + c2  a + b + c  a) ≥  ; b) ≥  c) Hãy tổng quát bài toán 2  2  3  3  Giải: 2 a2 + b2  a + b  a) Ta xét hiệu −  2  2  2( a 2 + b 2 ) a 2 + 2ab + b 2 = ( 2a 2 + 2b 2 − a 2 − b 2 − 2ab ) = ( a − b ) ≥ 0 1 1 2 = − 4 4 4 4 2 a +b 2 2 a+b Vậy ≥  . Dấu bằng xảy ra khi a=b 2  2  b)Ta xét hiệuSưu tầm và tuyển chọn 2
  3. 3. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com [ ] 2 a2 + b2 + c2  a + b + c  1  = ( a − b ) + ( b − c ) + ( c − a ) ≥ 0 .Vậy 2 2 2 − 3  3  9 2a2 + b2 + c2  a + b + c  ≥  3  3  Dấu bằng xảy ra khi a = b =c c)Tổng quát 2 a12 + a 2 + .... + a n  a1 + a 2 + .... + a n  2 2 ≥  n  n  Tóm lại các bước để chứng minh A ≥ B theo định nghĩa Bước 1: Ta xét hiệu H = A - B Bước 2:Biến đổi H=(C+D) 2 hoặc H=(C+D) 2 +….+(E+F) 2 Bước 3:Kết luận A ≥ B Ví dụ 1: Chứng minh ∀m,n,p,q ta đều có : m 2 + n 2 + p 2 + q 2 +1≥ m(n+p+q+1) Giải:  m2   m2   m2   m2  ⇔  4 − mn + n 2  +    4 − mp + p 2  +    4 − mq + q 2  +    4 − m + 1 ≥ 0          2 2 2 2 m  m  m  m  ⇔  − n  +  − p  +  − q  +  − 1 ≥ 0 (luôn đúng) 2  2  2  2  m  2 −n =0  m m n = 2  − p=0  m 2 p =  m=2 Dấu bằng xảy ra khi  m ⇔ 2 ⇔  −q =0  m n = p = q = 1 2  q= m m =2 2 −1 = 0  2  Ví dụ 2: Chứng minh rằng với mọi a, b, c ta luôn có : a 4 + b 4 + c 4 ≥ abc(a + b + c) Giải: Ta có : a 4 + b 4 + c 4 ≥ abc(a + b + c) , ∀ , b, c > 0 a ⇔ a 4 + b 4 + c 4 − a 2 bc − b 2 ac − c 2 ab ≥ 0 ⇔ 2a 4 + 2b 4 + 2c 4 − 2a 2 bc − 2b 2 ac − 2c 2 ab ≥ 0 ( ⇔ a2 −b2 ) 2 ( + 2a 2 b 2 + b 2 − c 2 ) 2 ( + 2b 2 c 2 + c 2 − a 2 ) 2 + 2a 2 c 2 − 2a 2 bc − 2b 2 ac − 2c 2 ab ≥ 0 ( ⇔ a2 −b2 ) + (b 2 2 −c2 ) + (c 2 2 −a2 ) 2 + (a 2 b 2 + b 2 c 2 − 2b 2 ac ) + (b 2 c 2 + c 2 a 2 − 2c 2 ab) + ( a 2 b 2 + c 2 a 2 − 2a 2 ab) ≥ 0 ( ⇔ a2 −b2 ) + (b 2 2 −c2 ) + (c 2 2 −a2 ) + ( ab − bc ) 2 2 + ( bc − ac ) + ( ab − ac ) ≥ 0 2 2 Đúng với mọi a, b, c. Phương pháp 2 : Dùng phép biến đổi tương đươngSưu tầm và tuyển chọn 3
  4. 4. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com Kiến thức: Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúnghoặc bất đẳng thức đã được chứng minh là đúng. Nếu A < B ⇔ C < D , với C < D là một bất đẳng thức hiển nhiên, hoặc đã biết là đúng thì cóbất đẳng thức A < B . Chú ý các hằng đẳng thức sau: ( A + B ) 2 = A 2 + 2 AB + B 2 ( A + B + C ) 2 = A 2 + B 2 + C 2 + 2 AB + 2 AC + 2 BC ( A + B ) 3 = A 3 + 3 A 2 B + 3 AB 2 + B 3 Ví dụ 1: Cho a, b, c, d,e là các số thực chứng minh rằng b2 a) a 2 + ≥ ab 4 b) a 2 + b 2 + 1 ≥ ab + a + b c) a 2 + b 2 + c 2 + d 2 + e 2 ≥ a( b + c + d + e ) Giải: b2 ≥ ab ⇔ 4a 2 + b 2 ≥ 4ab ⇔ 4a 2 − 4a + b 2 ≥ 0 ⇔ ( 2a − b ) ≥ 0 2 a) a 2 + 4 b2 (BĐT này luôn đúng). Vậy a 2 + ≥ ab (dấu bằng xảy ra khi 2a=b) 4 b) a + b + 1 ≥ ab + a + b ⇔ 2(a + b 2 + 1 ) > 2(ab + a + b) 2 2 2 ⇔ a 2 − 2ab + b 2 + a 2 − 2a + 1 + b 2 − 2b + 1 ≥ 0 ⇔ (a − b) 2 + (a − 1) 2 + (b − 1) 2 ≥ 0 Bất đẳng thức cuối đúng. Vậy a 2 + b 2 + 1 ≥ ab + a + b . Dấu bằng xảy ra khi a=b=1 c) a 2 + b 2 + c 2 + d 2 + e 2 ≥ a( b + c + d + e ) ⇔ 4( a 2 + b 2 + c 2 + d 2 + e 2 ) ≥ 4a( b + c + d + e ) ⇔ ( a 2 − 4ab + 4b 2 ) + ( a 2 − 4ac + 4c 2 ) + ( a 2 − 4ad + 4d 2 ) + ( a 2 − 4ac + 4c 2 ) ≥ 0 ⇔ ( a − 2b ) 2 + ( a − 2c ) 2 + ( a − 2d ) 2 + ( a − 2c ) 2 ≥ 0 Bất đẳng thức đúng vậy ta có điều phải chứng minh Ví dụ 2: Chứng minh rằng: ( a10 + b10 )( a 2 + b 2 ) ≥ ( a 8 + b 8 )( a 4 + b 4 ) Giải: (a + b10 )( a 2 + b 2 ) ≥ ( a 8 + b 8 )( a 4 + b 4 ) ⇔ a 12 + a 10 b 2 + a 2 b10 + b12 ≥ a 12 + a 8 b 4 + a 4 b 8 + b12 10 ⇔ a 8 b 2 ( a 2 − b 2 ) + a 2 b 8 ( b 2 − a 2 ) ≥ 0 ⇔ a2b2(a2-b2)(a6-b6) ≥ 0 ⇔ a2b2(a2-b2)2(a4+ a2b2+b4) ≥ 0 Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh x2 + y2 Ví dụ 3: cho x.y =1 và x 〉 y Chứng minh ≥2 2 x− y x2 + y2 Giải: ≥ 2 2 vì :x 〉 y nên x- y 〉 0 ⇒ x2+y2 ≥ 2 2 ( x-y) x− y ⇒ x +y2- 2 2 x+ 2 2 y ≥ 0 ⇔ x2+y2+2- 2 2 x+ 2 2 y -2 ≥ 0 2 ⇔ x2+y2+( 2 )2- 2 2 x+ 2 2 y -2xy ≥ 0 vì x.y=1 nên 2.x.y=2 ⇒ (x-y- 2 )2 ≥ 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh Ví dụ 4: Chứng minh rằng: a/ P(x,y)= 9 x 2 y 2 + y 2 − 6 xy − 2 y + 1 ≥ 0 ∀x, y ∈ RSưu tầm và tuyển chọn 4
  5. 5. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com b/ a 2 + b 2 + c 2 ≤ a + b + c (gợi ý :bình phương 2 vế) c/ Cho ba số thực khác không x, y, z thỏa mãn:  x. y.z = 1 1 1 1  + + < x+ y+z x y z  Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1 Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1 1 1 1 1 1 1 1 1 1 =(xyz-1)+(x+y+z)-xyz( x + y + z )=x+y+z - ( + + ) > 0 (vì x + y + z < x+y+z x y ztheo gt) ⇒ 2 trong 3 số x-1 , y-1 , z-1 âm hoặc cả ba sỗ-1 , y-1, z-1 là dương. Nếu trường hợp sau xảy ra thì x, y, z >1 ⇒ x.y.z>1 Mâu thuẫn gt x.y.z=1 bắtbuộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1 a b c Ví dụ 5: Chứng minh rằng : 1 < a + b + b + c + a + c < 2 Giải: 1 1 a a Ta có : a+b< a+b+c⇒ > ⇒ > (1) a+b a+b+c a+b a+b+c b b c c Tương tự ta có : b + c > a + b + c (2) , a + c > a + b + c (3) Cộng vế theo vế các bất đẳng thức (1), (2), (3), ta được : a b c + + > 1 (*) a+b b+c a+c a a+c Ta có : a < a + b ⇒ a + b < a + b + c (4) b a+b c c+b Tương tự : b + c < a + b + c (5) , < c+a a+b+c ( 6) Cộng vế theo vế các bất đẳng thức (4), (5), (6), ta được : a b c + + <2 (**) a+b b+c a+c a b c Từ (*) và (**) , ta được : 1 < a + b + b + c + a + c < 2 (đpcm) Phương pháp 3: Dùng bất đẳng thức phụ Kiến thức: a) x 2 + y 2 ≥ 2 xy b) x + y ≥ xy dấu( = ) khi x = y = 0 2 2 c) ( x + y ) 2 ≥ 4 xy a b d) + ≥ 2 b a Ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng (a+b)(b+c)(c+a) ≥ 8abc Giải: Dùng bất đẳng thức phụ: ( x + y ) 2 ≥ 4 xySưu tầm và tuyển chọn 5
  6. 6. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com Tacó ( a + b ) 2 ≥ 4ab ; ( b + c ) 2 ≥ 4bc ; ( c + a ) 2 ≥ 4ac ⇒ ( a + b ) 2 ( b + c ) 2 ( c + a ) 2 ≥ 64a 2 b 2 c 2 = ( 8abc ) 2 ⇒ (a+b)(b+c)(c+a) ≥ 8abc Dấu “=” xảy ra khi a = b = c Phương pháp 4: Bất đẳng thức Cô sy Kiến thức: a/ Với hai số không âm : a, b ≥ 0 , ta có: a + b ≥ 2 ab . Dấu “=” xảy ra khi a=b b/ Bất đẳng thức mở rộng cho n số không âm : a1 + a 2 + ... + a n ≥ n n a1 a 2 ..a n n  a + a 2 + ... + a n  ⇔ a1 a 2 ..a n ≤  1   n  Dấu “=” xảy ra khi a1 = a 2 = ... = a n Chú ý : ta dùng bất đẳng thức Côsi khi đề cho biến số không âm. 2x 4x 2x 3 Ví dụ 1 : Giải phương trình : + x + x = 4 +1 2 +1 2 + 4 x x 2  a = 2x Giải : Nếu đặt t =2x thì pt trở thành pt bậc 6 theo t nên ta đặt  , a, b > 0  b = 4 x a b 1 3 Khi đó phương trình có dạng : b + 1 + a + 1 + a + b = 2 Vế trái của phương trình:  a   b   1  = + 1 +  + 1 +  + 1 − 3  b +1   a +1   a + b   a + b +1  a + b +1  a + b +1 = + + −3  b +1   a +1   a + b   1 1 1  = ( a + b + c) + + −3  b +1 a +1 a + b  [ ( b + 1) + ( a + 1) + ( a + b ) ] 1 + 1 + 1  − 3    b +1 a +1 a + b  1 3 3 3 ≥ 3 ( a + 1)( b + 1)( a + b ) . −3 = 2 3 ( a + 1)( b + 1)( a + b ) 2 Vậy phương trình tương đương với : a + 1 = b + 1 = a + b ⇔ a = b = 1 ⇔ 2x = 4x = 1 ⇔ x = 0 . x y z Ví dụ 2 : Cho x, y , z > 0 và x + y + z = 1. Tìm GTLN của P = x + 1 + y + 1 + z + 1 1 1 1 Giải : P = 3- ( x + 1 + y + 1 + z + 1 ) = 3 – Q. Theo BDT Côsi , nếu a, b, c > 0 thìSưu tầm và tuyển chọn 6
  7. 7. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com a + b + c ≥ 3 3 abc 1 1 1 1 + + ≥ 33 a b c abc 1 1 1 ⇒ ( a + b + c ) + +  ≥ 9 a b c 1 1 1 9 ⇒ + + ≥ a b c a +b+c 1 1 1 9 9 9 3 Suy ra Q = x + 1 + y + 1 + z + 1 ≥ 4 ⇒ -Q ≤ − 4 nên P = 3 – Q ≤ 3- 4 = 4 3 1 Vậy max P = 4 .khi x = y = z = 3 . 1 1 1 a+b+c Ví dụ 3: Cho a, b, c >0 . Chứng minh rằng: + 2 + 2 ≤ a + bc b + ac c + ab 2 2abc Giả...
31 tháng 7 2017

em cần giải bài này ak

28 tháng 1 2021

444448888855555695+777+6666555888852652522222222222222222256585965

28 tháng 1 2021

Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4

A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)

A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)

áp dụng hàng đẳng thức:

(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2

A= - ( (a2-b2+c2)-4(ca)2)

A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)

CHÚC BẠN HỌC TỐT##

30 tháng 4 2017

Có a,b,c>0;a+b>c,b+c>a,c+a>b

=>a+b-c>0,b+c-a>0,c+a-b>0

=>c2(a+b-c)>0,a2(b+c-a)>0,b2(c+a-b)>0

=>c2(a+b-c)+a2(b+c-a)+b2(c+a-b)>0

=>(đẳng thức đề bài) > 0

17 tháng 7 2016


A = 2a2b+ 2b2c+ 2a2c− a− b− c4

<=> A = 4a2c− ( a4+b+ c− 2a2b+ 2a2c− 2b2c)

<=> A = 4a2c− ( a− b+ c2)2

<=> A = ( 2ac + a− b+ c) ( 2ac − a+ b− c)

<=> A = [ (a+c)− b] ( b− (a−c)2)

<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\

a+b+c>0

a+c−b>0

b+a−c>0

b−a+c>

=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0

A>0 (Dpcm)

16 tháng 6 2016

bạn sử dụng BĐT tam giác :

a  <  b + c => a2 < b2 + c2

b < a + c => b2 < a2 + c2

c < a + b => c2 < a2 + b2

bạn tự làm nhé vì mik làm bạn cũng ko chọn mik

16 tháng 6 2016

Ta có:A = a+ b+ c- 2a2b- 2b2c- 2a2c= (a2)+ (b2)+ (c2)+ 2a2b- 2b2c- 2a2c+

4a2b= (a2+b2-c2)2-4a2b2

=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)

Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2

=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)

lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)

Từ (1)(2)(3) =>A<0 (Đpcm)

NV
25 tháng 4 2020

Bạn tham khảo (hoàn toàn dùng Cô-si):

Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến

25 tháng 4 2020

cảm ơn ạ ^^