
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


cho công thức nhé
19 phương phap chứng minh bất đẳng thức
- 1. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com PHẦN 1 CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1
- 2. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com PHẦN II CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC Phương pháp 1 : Dùng định nghĩa Kiến thức : Để chứng minh A > B. Ta lập hiệu A –B > 0 Lưu ý dùng hằng bất đẳng thức M 2 ≥ 0 với∀ M Ví dụ 1 ∀ x, y, z chứng minh rằng : a) x 2 + y 2 + z 2 ≥ xy+ yz + zx b) x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz c) x 2 + y 2 + z 2 +3 ≥ 2 (x + y + z) Giải: 1 a) Ta xét hiệu : x 2 + y 2 + z 2 - xy – yz – zx = .2 .( x 2 + y 2 + z 2 - xy – yz – zx) 2 = 1 2 [ ] ( x − y ) 2 + ( x −z ) 2 + ( y − z ) 2 ≥ 0 đúng với mọi x;y;z ∈ R Vì (x-y)2 ≥ 0 với∀x ; y Dấu bằng xảy ra khi x=y (x-z)2 ≥ 0 với∀x ; z Dấu bằng xảy ra khi x=z (y-z)2 ≥ 0 với∀ z; y Dấu bằng xảy ra khi z=y Vậy x 2 + y 2 + z 2 ≥ xy+ yz + zx. Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu: x 2 + y 2 + z 2 - ( 2xy – 2xz +2yz ) = x 2 + y 2 + z 2 - 2xy +2xz –2yz = ( x – y + z) 2 ≥ 0 đúng với mọi x;y;z ∈ R Vậy x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz đúng với mọi x;y;z ∈ R Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu: x 2 + y 2 + z 2 +3 – 2( x+ y +z ) = x 2 - 2x + 1 + y 2 -2y +1 + z 2 -2z +1 = (x-1) 2 + (y-1) 2 +(z-1) 2 ≥ 0. Dấu(=)xảy ra khi x=y=z=1 Ví dụ 2: chứng minh rằng : 2 2 a2 + b2 a + b a2 + b2 + c2 a + b + c a) ≥ ; b) ≥ c) Hãy tổng quát bài toán 2 2 3 3 Giải: 2 a2 + b2 a + b a) Ta xét hiệu − 2 2 2( a 2 + b 2 ) a 2 + 2ab + b 2 = ( 2a 2 + 2b 2 − a 2 − b 2 − 2ab ) = ( a − b ) ≥ 0 1 1 2 = − 4 4 4 4 2 a +b 2 2 a+b Vậy ≥ . Dấu bằng xảy ra khi a=b 2 2 b)Ta xét hiệuSưu tầm và tuyển chọn 2
- 3. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com [ ] 2 a2 + b2 + c2 a + b + c 1 = ( a − b ) + ( b − c ) + ( c − a ) ≥ 0 .Vậy 2 2 2 − 3 3 9 2a2 + b2 + c2 a + b + c ≥ 3 3 Dấu bằng xảy ra khi a = b =c c)Tổng quát 2 a12 + a 2 + .... + a n a1 + a 2 + .... + a n 2 2 ≥ n n Tóm lại các bước để chứng minh A ≥ B theo định nghĩa Bước 1: Ta xét hiệu H = A - B Bước 2:Biến đổi H=(C+D) 2 hoặc H=(C+D) 2 +….+(E+F) 2 Bước 3:Kết luận A ≥ B Ví dụ 1: Chứng minh ∀m,n,p,q ta đều có : m 2 + n 2 + p 2 + q 2 +1≥ m(n+p+q+1) Giải: m2 m2 m2 m2 ⇔ 4 − mn + n 2 + 4 − mp + p 2 + 4 − mq + q 2 + 4 − m + 1 ≥ 0 2 2 2 2 m m m m ⇔ − n + − p + − q + − 1 ≥ 0 (luôn đúng) 2 2 2 2 m 2 −n =0 m m n = 2 − p=0 m 2 p = m=2 Dấu bằng xảy ra khi m ⇔ 2 ⇔ −q =0 m n = p = q = 1 2 q= m m =2 2 −1 = 0 2 Ví dụ 2: Chứng minh rằng với mọi a, b, c ta luôn có : a 4 + b 4 + c 4 ≥ abc(a + b + c) Giải: Ta có : a 4 + b 4 + c 4 ≥ abc(a + b + c) , ∀ , b, c > 0 a ⇔ a 4 + b 4 + c 4 − a 2 bc − b 2 ac − c 2 ab ≥ 0 ⇔ 2a 4 + 2b 4 + 2c 4 − 2a 2 bc − 2b 2 ac − 2c 2 ab ≥ 0 ( ⇔ a2 −b2 ) 2 ( + 2a 2 b 2 + b 2 − c 2 ) 2 ( + 2b 2 c 2 + c 2 − a 2 ) 2 + 2a 2 c 2 − 2a 2 bc − 2b 2 ac − 2c 2 ab ≥ 0 ( ⇔ a2 −b2 ) + (b 2 2 −c2 ) + (c 2 2 −a2 ) 2 + (a 2 b 2 + b 2 c 2 − 2b 2 ac ) + (b 2 c 2 + c 2 a 2 − 2c 2 ab) + ( a 2 b 2 + c 2 a 2 − 2a 2 ab) ≥ 0 ( ⇔ a2 −b2 ) + (b 2 2 −c2 ) + (c 2 2 −a2 ) + ( ab − bc ) 2 2 + ( bc − ac ) + ( ab − ac ) ≥ 0 2 2 Đúng với mọi a, b, c. Phương pháp 2 : Dùng phép biến đổi tương đươngSưu tầm và tuyển chọn 3
- 4. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com Kiến thức: Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúnghoặc bất đẳng thức đã được chứng minh là đúng. Nếu A < B ⇔ C < D , với C < D là một bất đẳng thức hiển nhiên, hoặc đã biết là đúng thì cóbất đẳng thức A < B . Chú ý các hằng đẳng thức sau: ( A + B ) 2 = A 2 + 2 AB + B 2 ( A + B + C ) 2 = A 2 + B 2 + C 2 + 2 AB + 2 AC + 2 BC ( A + B ) 3 = A 3 + 3 A 2 B + 3 AB 2 + B 3 Ví dụ 1: Cho a, b, c, d,e là các số thực chứng minh rằng b2 a) a 2 + ≥ ab 4 b) a 2 + b 2 + 1 ≥ ab + a + b c) a 2 + b 2 + c 2 + d 2 + e 2 ≥ a( b + c + d + e ) Giải: b2 ≥ ab ⇔ 4a 2 + b 2 ≥ 4ab ⇔ 4a 2 − 4a + b 2 ≥ 0 ⇔ ( 2a − b ) ≥ 0 2 a) a 2 + 4 b2 (BĐT này luôn đúng). Vậy a 2 + ≥ ab (dấu bằng xảy ra khi 2a=b) 4 b) a + b + 1 ≥ ab + a + b ⇔ 2(a + b 2 + 1 ) > 2(ab + a + b) 2 2 2 ⇔ a 2 − 2ab + b 2 + a 2 − 2a + 1 + b 2 − 2b + 1 ≥ 0 ⇔ (a − b) 2 + (a − 1) 2 + (b − 1) 2 ≥ 0 Bất đẳng thức cuối đúng. Vậy a 2 + b 2 + 1 ≥ ab + a + b . Dấu bằng xảy ra khi a=b=1 c) a 2 + b 2 + c 2 + d 2 + e 2 ≥ a( b + c + d + e ) ⇔ 4( a 2 + b 2 + c 2 + d 2 + e 2 ) ≥ 4a( b + c + d + e ) ⇔ ( a 2 − 4ab + 4b 2 ) + ( a 2 − 4ac + 4c 2 ) + ( a 2 − 4ad + 4d 2 ) + ( a 2 − 4ac + 4c 2 ) ≥ 0 ⇔ ( a − 2b ) 2 + ( a − 2c ) 2 + ( a − 2d ) 2 + ( a − 2c ) 2 ≥ 0 Bất đẳng thức đúng vậy ta có điều phải chứng minh Ví dụ 2: Chứng minh rằng: ( a10 + b10 )( a 2 + b 2 ) ≥ ( a 8 + b 8 )( a 4 + b 4 ) Giải: (a + b10 )( a 2 + b 2 ) ≥ ( a 8 + b 8 )( a 4 + b 4 ) ⇔ a 12 + a 10 b 2 + a 2 b10 + b12 ≥ a 12 + a 8 b 4 + a 4 b 8 + b12 10 ⇔ a 8 b 2 ( a 2 − b 2 ) + a 2 b 8 ( b 2 − a 2 ) ≥ 0 ⇔ a2b2(a2-b2)(a6-b6) ≥ 0 ⇔ a2b2(a2-b2)2(a4+ a2b2+b4) ≥ 0 Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh x2 + y2 Ví dụ 3: cho x.y =1 và x 〉 y Chứng minh ≥2 2 x− y x2 + y2 Giải: ≥ 2 2 vì :x 〉 y nên x- y 〉 0 ⇒ x2+y2 ≥ 2 2 ( x-y) x− y ⇒ x +y2- 2 2 x+ 2 2 y ≥ 0 ⇔ x2+y2+2- 2 2 x+ 2 2 y -2 ≥ 0 2 ⇔ x2+y2+( 2 )2- 2 2 x+ 2 2 y -2xy ≥ 0 vì x.y=1 nên 2.x.y=2 ⇒ (x-y- 2 )2 ≥ 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh Ví dụ 4: Chứng minh rằng: a/ P(x,y)= 9 x 2 y 2 + y 2 − 6 xy − 2 y + 1 ≥ 0 ∀x, y ∈ RSưu tầm và tuyển chọn 4
- 5. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com b/ a 2 + b 2 + c 2 ≤ a + b + c (gợi ý :bình phương 2 vế) c/ Cho ba số thực khác không x, y, z thỏa mãn: x. y.z = 1 1 1 1 + + < x+ y+z x y z Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1 Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1 1 1 1 1 1 1 1 1 1 =(xyz-1)+(x+y+z)-xyz( x + y + z )=x+y+z - ( + + ) > 0 (vì x + y + z < x+y+z x y ztheo gt) ⇒ 2 trong 3 số x-1 , y-1 , z-1 âm hoặc cả ba sỗ-1 , y-1, z-1 là dương. Nếu trường hợp sau xảy ra thì x, y, z >1 ⇒ x.y.z>1 Mâu thuẫn gt x.y.z=1 bắtbuộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1 a b c Ví dụ 5: Chứng minh rằng : 1 < a + b + b + c + a + c < 2 Giải: 1 1 a a Ta có : a+b< a+b+c⇒ > ⇒ > (1) a+b a+b+c a+b a+b+c b b c c Tương tự ta có : b + c > a + b + c (2) , a + c > a + b + c (3) Cộng vế theo vế các bất đẳng thức (1), (2), (3), ta được : a b c + + > 1 (*) a+b b+c a+c a a+c Ta có : a < a + b ⇒ a + b < a + b + c (4) b a+b c c+b Tương tự : b + c < a + b + c (5) , < c+a a+b+c ( 6) Cộng vế theo vế các bất đẳng thức (4), (5), (6), ta được : a b c + + <2 (**) a+b b+c a+c a b c Từ (*) và (**) , ta được : 1 < a + b + b + c + a + c < 2 (đpcm) Phương pháp 3: Dùng bất đẳng thức phụ Kiến thức: a) x 2 + y 2 ≥ 2 xy b) x + y ≥ xy dấu( = ) khi x = y = 0 2 2 c) ( x + y ) 2 ≥ 4 xy a b d) + ≥ 2 b a Ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng (a+b)(b+c)(c+a) ≥ 8abc Giải: Dùng bất đẳng thức phụ: ( x + y ) 2 ≥ 4 xySưu tầm và tuyển chọn 5
- 6. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com Tacó ( a + b ) 2 ≥ 4ab ; ( b + c ) 2 ≥ 4bc ; ( c + a ) 2 ≥ 4ac ⇒ ( a + b ) 2 ( b + c ) 2 ( c + a ) 2 ≥ 64a 2 b 2 c 2 = ( 8abc ) 2 ⇒ (a+b)(b+c)(c+a) ≥ 8abc Dấu “=” xảy ra khi a = b = c Phương pháp 4: Bất đẳng thức Cô sy Kiến thức: a/ Với hai số không âm : a, b ≥ 0 , ta có: a + b ≥ 2 ab . Dấu “=” xảy ra khi a=b b/ Bất đẳng thức mở rộng cho n số không âm : a1 + a 2 + ... + a n ≥ n n a1 a 2 ..a n n a + a 2 + ... + a n ⇔ a1 a 2 ..a n ≤ 1 n Dấu “=” xảy ra khi a1 = a 2 = ... = a n Chú ý : ta dùng bất đẳng thức Côsi khi đề cho biến số không âm. 2x 4x 2x 3 Ví dụ 1 : Giải phương trình : + x + x = 4 +1 2 +1 2 + 4 x x 2 a = 2x Giải : Nếu đặt t =2x thì pt trở thành pt bậc 6 theo t nên ta đặt , a, b > 0 b = 4 x a b 1 3 Khi đó phương trình có dạng : b + 1 + a + 1 + a + b = 2 Vế trái của phương trình: a b 1 = + 1 + + 1 + + 1 − 3 b +1 a +1 a + b a + b +1 a + b +1 a + b +1 = + + −3 b +1 a +1 a + b 1 1 1 = ( a + b + c) + + −3 b +1 a +1 a + b [ ( b + 1) + ( a + 1) + ( a + b ) ] 1 + 1 + 1 − 3 b +1 a +1 a + b 1 3 3 3 ≥ 3 ( a + 1)( b + 1)( a + b ) . −3 = 2 3 ( a + 1)( b + 1)( a + b ) 2 Vậy phương trình tương đương với : a + 1 = b + 1 = a + b ⇔ a = b = 1 ⇔ 2x = 4x = 1 ⇔ x = 0 . x y z Ví dụ 2 : Cho x, y , z > 0 và x + y + z = 1. Tìm GTLN của P = x + 1 + y + 1 + z + 1 1 1 1 Giải : P = 3- ( x + 1 + y + 1 + z + 1 ) = 3 – Q. Theo BDT Côsi , nếu a, b, c > 0 thìSưu tầm và tuyển chọn 6
- 7. 19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com a + b + c ≥ 3 3 abc 1 1 1 1 + + ≥ 33 a b c abc 1 1 1 ⇒ ( a + b + c ) + + ≥ 9 a b c 1 1 1 9 ⇒ + + ≥ a b c a +b+c 1 1 1 9 9 9 3 Suy ra Q = x + 1 + y + 1 + z + 1 ≥ 4 ⇒ -Q ≤ − 4 nên P = 3 – Q ≤ 3- 4 = 4 3 1 Vậy max P = 4 .khi x = y = z = 3 . 1 1 1 a+b+c Ví dụ 3: Cho a, b, c >0 . Chứng minh rằng: + 2 + 2 ≤ a + bc b + ac c + ab 2 2abc Giả...

444448888855555695+777+6666555888852652522222222222222222256585965
Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4
A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)
A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)
áp dụng hàng đẳng thức:
(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2
A= - ( (a2-b2+c2)-4(ca)2)
A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)
CHÚC BẠN HỌC TỐT##

Có a,b,c>0;a+b>c,b+c>a,c+a>b
=>a+b-c>0,b+c-a>0,c+a-b>0
=>c2(a+b-c)>0,a2(b+c-a)>0,b2(c+a-b)>0
=>c2(a+b-c)+a2(b+c-a)+b2(c+a-b)>0
=>(đẳng thức đề bài) > 0

A = 2a2b2 + 2b2c2 + 2a2c2 − a4 − b4 − c4
<=> A = 4a2c2 − ( a4+b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2 )
<=> A = 4a2c2 − ( a2 − b2 + c2)2
<=> A = ( 2ac + a2 − b2 + c2 ) ( 2ac − a2 + b2 − c2 )
<=> A = [ (a+c)2 − b2 ] ( b2 − (a−c)2)
<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\
a+b+c>0
a+c−b>0
b+a−c>0
b−a+c>
=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
A>0 (Dpcm)

bạn sử dụng BĐT tam giác :
a < b + c => a2 < b2 + c2
b < a + c => b2 < a2 + c2
c < a + b => c2 < a2 + b2
bạn tự làm nhé vì mik làm bạn cũng ko chọn mik
Ta có:A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 +
4a2b2 = (a2+b2-c2)2-4a2b2
=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)
Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2
=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)
lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)
Từ (1)(2)(3) =>A<0 (Đpcm)

Bạn tham khảo (hoàn toàn dùng Cô-si):
Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến

Với 2 số
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
Với 3 số
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel
\(\frac{3}{a+2b}+\frac{3}{b+2a}=3\left(\frac{1}{a+2b}+\frac{1}{b+2a}\right)\ge\frac{3.\left(1+1\right)^2}{a+2b+b+2a}=\frac{3.4}{3\left(a+b\right)}=\frac{4}{a+b}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b\)