Cho AABC vuông tại A (AB < AC), vẽ đường cao AM (H = BC)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC vuông tại A và ΔBMA vuông tại M có

góc B chung

=>ΔBAC đồng dạng với ΔBMA

b: Xét ΔBMH vuông tại M và ΔBKC vuông tại K có

góc MBH chung

=>ΔBMH đồng dạng với ΔBKC

=>BM/BK=BH/BC

=>BM*BC=BK*BH

c: 

góc AMB=góc AIB=90 độ

=>ABMI nội tiếp

=>góc AIM=180 độ-góc ABC

góc AIK+góc ATK=90 độ+90 độ=180 độ

=>AIKT nội tiếp

=>góc AIT=góc AKT

góc BAC=góc BKC=90 độ

=>BAKC nội tiếp

=>góc ABC+góc AKC=180 độ

=>góc ABC=góc AKY=góc AIT

góc MIT=góc AIM+góc AIT

=180 độ-góc ABC+góc ABC

=180 độ

=>M,I,T thẳng hàng

22 tháng 8

thiếu đề

22 tháng 8

Đề bài của em đang thiếu vế phải, em nhé. Em vui lòng đăng lại câu hỏi mới với nội dung câu hỏi đầy đủ, để nhận được sự hỗ trợ tốt nhất từ cộng đồng Olm.

a: Xét ΔMAB và ΔMCD có

MA=MC

\(\hat{AMB}=\hat{CMD}\) (hai góc đối đỉnh)

MB=MD

Do đó: ΔAMB=ΔCMD

b: ΔMAB=ΔMCD

=>\(\hat{MAB}=\hat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD
c: ΔMAB=ΔMCD

=>AB=CD

mà CD=CN

nên AB=CN

AB//CD
=>AB//CN

Xét ΔABC và ΔNCB có

AB=NC

\(\hat{ABC}=\hat{NCB}\) (hai góc so le trong, AB//CN)

BC chung

Do đó: ΔABC=ΔNCB

=>\(\hat{ACB}=\hat{NBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BN//AC

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có

BH chung

HA=HK

Do đó: ΔBHA=ΔBHK

=>BA=BK

=>\(\hat{BAK}=\hat{BKA}\)

b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)

\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)

\(\hat{BAK}=\hat{BKA}\)

nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)

Xét ΔBAD và ΔBKI có

\(\hat{BAD}=\hat{BKI}\)

BA=BK

\(\hat{ABD}\) chung

Do đó: ΔBAD=ΔBKI

=>BD=BI; AD=KI

Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)

nên IK//AK

=>AKDI là hình thang

Hình thang AKDI có AD=KI

nên AKDI là hình thang cân

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*