K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

A =  1 + 2 + 22 + .... + 22014 

Ta có :

a ) 2A = 2 ( 1 + 2 + 22 + .... + 22014 )

= 2 + 22 + 24 + ... + 22015

2A - A = ( 2 + 22 + 24 + ... + 22015 ) - ( 1 + 2 + 22 + .... + 22014 )

A = 22015 - 1

b ) A = ( 1 + 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 + 29 ) + .... + ( 22010 + 22011 + 22012 + 22013 + 22014 )

= ( 1 + 2 + 22 + 23 + 24 ) + 25( 1 + 2 + 22 + 23 + 24 ) + .... + 22010( 1 + 2 + 22 + 23 + 24 )

= ( 1 + 2 + 4 + 8 + 16 ) + 25 ( 1 + 2 + 4 + 8 + 16 ) + ... + 22010( 1 + 2 + 4 + 8 + 16 )

= 31 + 25.31 + .... + 31.22010

= 31( 1 + 25 + .... + 22010 ) chia hết cho 31 ( đpcm )

a)Xét \(2A=2+2^2+....+2^{2015}\)

nên \(2A-A=2^{2015}-1\)

=>\(A=2^{2015}-1\)

b)Ta có :\(2^5=32\equiv-1\left(mod31\right)\)

=>\(2^{2015}\equiv-1\left(mod31\right)\)

=>\(2^{2015}-1\equiv-2\left(mod31\right)\)(kiểm tra lại đề bài đi bạn)

4 tháng 1 2018

a,A = 1 + 2 + 22 + 23 +.... + 22013 + 22014

2A = 2 + 22 + 23 + ...... + 22013 + 22014 + 22015

A  = ( 2 + 22 + 23 + ..... + 22013 + 22014 + 22015 ) - ( 1 + 2 + 22 + 2+ ..... + 22013 + 22014 )

A = 22015 - 1

b, A = 1 + 2 + 2+ 23 + ... + 22013 + 22014

       = ( 1 + 2 + 22 + 23 + 24 ) + .... + ( 22010 + 22011 + 22012 + 22013 + 22014 )

       = 31 + ..... + 22010.( 1 + 2 + 22 + 23 + 24 )

       = 31 + ..... + 22010 . 31

       = 31.1 + ..... + 22010 . 31

       = 31. ( 1 + .... + 22010 ) chia hết cho 31

=> A chia hết cho 31

4 tháng 1 2018

a)   \(A=1+2+2^2+2^3+....+2^{2014}\)

\(\Leftrightarrow\)\(2A=2+2^2+2^3+2^4+...+2^{2015}\)

\(\Leftrightarrow\)\(2A-A=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)

\(\Leftrightarrow\)\(A=2^{2015}-1\)

b)    \(A=1+2+2^2+2^3+...+2^{2014}\)

\(=\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)\)\(+...+\left(2^{2010}+2^{2011}+2^{2012}+2^{2013}+2^{2014}\right)\)

\(=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)\)\(+...+2^{2010}\left(1+2+2^2+2^3+2^4\right)\)

\(=\left(1+2+2^2+2^3+2^4\right)\left(1+2^5+...+2^{2010}\right)\)

\(=31\left(1+2^5+...+2^{2010}\right)\)  \(⋮31\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:
a.

$A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

b.

Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$

Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$

Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$

$=2+7(2^2+2^5+...+2^{98})$

$\Rightarrow A$ không chia hết cho 7

$\Rightarrow A$ không chia hết cho 14.

29 tháng 9 2024

.................

 

30 tháng 10 2020

a, A = 1 + 5 +52 + .. + 511

A = ( 1+5 ) + ( 52 + 53) +...+ ( 510 + 511)

A = 6 + 52. 6  + ... + 510 .6 

A = 6 . (1+52 + ...+ 510 )

=> A \(⋮\) 6 

b, A =  1 + 5 +52 + .. + 511  

A = ( 1 + 5 +52 ) + ( 53 + 54 +55 )  +  ... + ( 59 + 510 + 511)

A= 31 +    31 . 53+ ... + 31.59 

A = 31 . ( 1 + 53 + ... + 59 ) 

=> A\(⋮\) 31 

20 tháng 8

Mình đang cần gấp, các bạn giúp mình nha.

Ta có:
A = 2015 × 2016 × 2017 × ... × 4028
Đây là tích của 2014 số tự nhiên liên tiếp.

Trong 2014 số tự nhiên liên tiếp này, chắc chắn có rất nhiều số chẵn. Cứ hai số thì có một số chẵn, nên sẽ có ít nhất một nửa là số chẵn.
=> Có ít nhất 1007 số chẵn.

Mỗi số chẵn sẽ chia hết cho 2, nên ta có ít nhất 1007 số chia hết cho 2.
Nhưng ngoài ra, trong 2014 số đó còn có các số chia hết cho 4, 8, 16,... nữa.

Ví dụ:

  • Cứ 4 số thì có ít nhất 1 số chia hết cho 4
  • Cứ 8 số thì có ít nhất 1 số chia hết cho 8
  • ...

Tổng số các lũy thừa của 2 trong các số này sẽ lớn hơn 2013.

Do đó, tích A sẽ chia hết cho 2 mũ 2013.

A chia hết cho 2 mũ 2013. (đpcm)

18 tháng 6 2015

Xin lỗi: Câu 2 phần b thiếu trường hợp n+1=-1 hoặc n+1=-3 nên n=-2 hoặc n=-4