Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt

a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
5n - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -0,6 | 0 | 0,2 | 0,4 | 0,8 | 1 | 1,2 | 1,8 |
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 |
5n | 4 | 2 | 5 | 1 | 6 | 0 |
n | 0,8 | 0,4 | 1 | 0,2 | 1,2 | 0 |
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)

a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...

Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2

Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
5n-3= | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n= | -0.6 | 0 | 0.2 | 0.4 | 0.8 | 1 | 1.2 | 1.8 |
Dưới đây là lời giải chi tiết cho hai bài toán bạn hỏi:
Bài 1: Tìm số nguyên \(n\) để biểu thức
\(\frac{2 n - 1}{3 n + 2}\)rút gọn được.
Phân tích:
Một phân số có thể rút gọn được khi tử số và mẫu số có ước chung lớn hơn 1.
Vậy ta cần tìm số nguyên \(n\) sao cho:
\(gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right) > 1\)Giải:
Gọi \(d = gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right)\), \(d > 1\).
Vì \(d \mid \left(\right. 2 n - 1 \left.\right)\) và \(d \mid \left(\right. 3 n + 2 \left.\right)\), nên \(d\) cũng chia được các tổ hợp tuyến tính của chúng:
\(d \mid \left(\right. 3 \times \left(\right. 2 n - 1 \left.\right) \left.\right) = 6 n - 3\) \(d \mid \left(\right. 2 \times \left(\right. 3 n + 2 \left.\right) \left.\right) = 6 n + 4\)Do đó,
\(d \mid \left(\right. \left(\right. 6 n + 4 \left.\right) - \left(\right. 6 n - 3 \left.\right) \left.\right) = 7\)Vậy \(d \mid 7\).
Vì \(d > 1\), nên \(d = 7\).
Điều kiện:
\(7 \mid \left(\right. 2 n - 1 \left.\right) \text{v} \overset{ˋ}{\text{a}} 7 \mid \left(\right. 3 n + 2 \left.\right)\)Tức là:
\(2 n - 1 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 2 n \equiv 1 \left(\right. m o d 7 \left.\right)\) \(3 n + 2 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 3 n \equiv - 2 \equiv 5 \left(\right. m o d 7 \left.\right)\)Giải từng phương trình modulo 7:
- \(2 n \equiv 1 \left(\right. m o d 7 \left.\right)\)
Nhân hai vế với nghịch đảo của 2 modulo 7. Vì \(2 \times 4 = 8 \equiv 1 \left(\right. m o d 7 \left.\right)\), nên nghịch đảo của 2 là 4.
\(n \equiv 4 \times 1 = 4 \left(\right. m o d 7 \left.\right)\)- \(3 n \equiv 5 \left(\right. m o d 7 \left.\right)\)
Nghịch đảo của 3 modulo 7 là 5 vì \(3 \times 5 = 15 \equiv 1 \left(\right. m o d 7 \left.\right)\)
\(n \equiv 5 \times 5 = 25 \equiv 4 \left(\right. m o d 7 \left.\right)\)Kết luận:
Cả hai điều kiện đều yêu cầu:
\(n \equiv 4 \left(\right. m o d 7 \left.\right)\)Vậy các số nguyên \(n\) thỏa mãn là:
\(n = 7 k + 4 , k \in \mathbb{Z}\)Bài 2: Cho
\(A = \frac{10 n}{5 n - 3} , n \in \mathbb{Z}\)a) Tìm \(n\) để \(A\) có giá trị nguyên
Điều kiện:
- Mẫu số khác 0:
- \(A\) là số nguyên \(\Rightarrow 5 n - 3 \mid 10 n\)
Phân tích:
Giả sử \(d = 5 n - 3\), ta cần \(d \mid 10 n\).
Ta có:
\(d = 5 n - 3 \Rightarrow 5 n = d + 3\)Thay vào biểu thức \(10 n = 2 \times 5 n = 2 \left(\right. d + 3 \left.\right) = 2 d + 6\).
Vì \(d \mid 10 n\), tức là \(d \mid 2 d + 6\).
Mà \(d \mid 2 d\) nên \(d \mid 6\).
Tóm lại:
\(5 n - 3 = d \mid 6\)Vậy \(5 n - 3\) là ước của 6.
Các ước của 6 là: \(\pm 1 , \pm 2 , \pm 3 , \pm 6\).
Tìm \(n\) ứng với từng giá trị:
- \(5 n - 3 = 1 \Rightarrow 5 n = 4 \Rightarrow n = \frac{4}{5}\) (không nguyên)
- \(5 n - 3 = - 1 \Rightarrow 5 n = 2 \Rightarrow n = \frac{2}{5}\) (không nguyên)
- \(5 n - 3 = 2 \Rightarrow 5 n = 5 \Rightarrow n = 1\) (nguyên)
- \(5 n - 3 = - 2 \Rightarrow 5 n = 1 \Rightarrow n = \frac{1}{5}\) (không nguyên)
- \(5 n - 3 = 3 \Rightarrow 5 n = 6 \Rightarrow n = \frac{6}{5}\) (không nguyên)
- \(5 n - 3 = - 3 \Rightarrow 5 n = 0 \Rightarrow n = 0\) (nguyên)
- \(5 n - 3 = 6 \Rightarrow 5 n = 9 \Rightarrow n = \frac{9}{5}\) (không nguyên)
- \(5 n - 3 = - 6 \Rightarrow 5 n = - 3 \Rightarrow n = - \frac{3}{5}\) (không nguyên)
Vậy các giá trị nguyên \(n\) thỏa mãn là:
\(n = 0 , n = 1\)Kiểm tra giá trị \(A\):
- Với \(n = 0\):
- Với \(n = 1\):
b) Tìm giá trị lớn nhất của \(A\)
Ta xét hàm số:
\(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)với \(n \in \mathbb{Z}\), \(n \neq \frac{3}{5}\).
Phân tích:
- Khi \(n \rightarrow + \infty\), \(A \left(\right. n \left.\right) \rightarrow \frac{10 n}{5 n} = 2\)
- Khi \(n \rightarrow - \infty\), \(A \left(\right. n \left.\right) \rightarrow 2\)
Tính giá trị \(A \left(\right. n \left.\right)\) tại một số \(n\) nguyên:
\(n\)nnn | \(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)A(n)=10n5n−3A(n) = \frac{10n}{5n - 3}A(n)=5n−310n | Giá trị |
---|---|---|
0 | 0 | 0 |
1 | \(\frac{10}{2} = 5\)102=5\frac{10}{2} = 5210=5 | 5 |
2 | \(\frac{20}{7} \approx 2.86\)207≈2.86\frac{20}{7} \approx 2.86720≈2.86 | 2.86 |
3 | \(\frac{30}{12} = 2.5\)3012=2.5\frac{30}{12} = 2.51230=2.5 | 2.5 |
4 | \(\frac{40}{17} \approx 2.35\)4017≈2.35\frac{40}{17} \approx 2.351740≈2.35 ... |
ĐKXĐ: \(n\ne1\)
a) Để A là số nguyên thì \(5n+9⋮n-1\)
\(\Leftrightarrow5n-5+14⋮n-1\)
mà \(5n-5⋮n-1\)
nên \(14⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(14\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(n\in\left\{2;0;3;-1;8;-6;15;-13\right\}\)(thỏa mãn ĐKXĐ)
Vậy: Để A là số nguyên thì \(n\in\left\{2;0;3;-1;8;-6;15;-13\right\}\)