\(a^2+b^2+c^2=2\); \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a+b+c=2

=>\(\left(a+b+c\right)^2=2^2=4\)

=>\(a^2+b^2+c^2+2\left(ab+ac+bc\right)=4\)

=>2(ab+ac+bc)=4-2=2

=>ab+ac+bc=1

\(a^2+1=a^2+ab+ac+bc\)

=a(a+b)+c(a+b)

=(a+b)(a+c)

\(b^2+1=b^2+ab+ac+bc\)

=b(a+b)+c(a+b)

=(a+b)(b+c)

\(c^2+1=c^2+ca+ab+bc\)

=c(a+c)+b(a+c)

=(a+c)(b+c)

\(M=\left(a^2+1\right)\cdot\left(b^2+1\right)\left(c^2+1\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)\left(c+a\right)\left(c+b\right)\)

\(=\left\lbrack\left(a+b\right)\left(b+c\right)\left(a+c\right)\right\rbrack^2\)

=>ĐPCM

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

1 tháng 10 2020

Bài 2:

Ta có: \(a+b+c=2\)

\(\Leftrightarrow\left(a+b+c\right)^2=4\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=2\)

\(\Rightarrow ab+bc+ca=1\)

Thay vào ta được: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

Tương tự CM được: \(b^2+1=\left(b+a\right)\left(b+c\right)\) và \(c^2+1=\left(c+a\right)\left(c+b\right)\)

=> \(M=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=> đpcm

5 tháng 10 2017

Bài 2 :

a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)

\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)