Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B M K C I H
a) Xét \(\Delta AHI\)và \(\Delta AKI\)có :
AI cạnh chung
\(\widehat{IHA}=\widehat{IKA}\)(AI là tia phân giác của A)
=> \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)
=> AH = AK(2 cạnh tương ứng)
b) Gọi M là trung điểm của BC
Xét \(\Delta BMI\)và \(\Delta CMI\)có :
BM = CM(gt)
\(\widehat{BMI}=\widehat{CMI}=90^0\)
MI cạnh chung
=> \(\Delta BMI=\Delta CMI\left(c-g-c\right)\)
=> IB = IC(2 cạnh tương ứng)
\(\Delta AHI=\Delta AKI\left(cmt\right)\)=> IH = IK(hai cạnh tương ứng)
Xét \(\Delta IHB\)và \(\Delta IKC\)có :
+) IH = IK(chứng minh trên)
+) IB = IC(chứng minh trên)
=> IH + IB = IK + KC
=> BH = CK(hai cạnh tương ứng)
c) Ta có : AC = AK + KC (1)
AB = AH - BH (2)
Từ (1) và (2) suy ra : AC + AB = (AK + AH) + (KC - BH)
Do AH = AK,BH = CK => AC + AB = 2AK , suy ra :
AK = \(\frac{AC+AB}{2}\)
Tương tự ta được \(CK=\frac{AC-AB}{2}\)

1)Các đường thẳng EM và MD cắt AB và AC lần lượt là K và H.
Kẻ đường thẳng EM,Ta có Vì EC//KM ta có HAMˆHAM^=AMEˆAME^(1)
Vì AB//MD=>KAMˆKAM^=AMDˆAMD^(2)
Mà BACˆBAC^=KAMˆKAM^+HAMˆHAM^(3)
tiếp KMDˆKMD^=KMAˆKMA^+AMDˆAMD^(4)
Từ (1),(2),(3) và (4)=>BACˆBAC^=EMDˆEMD^
Kẻ D với B.Xét tam giác ABD và tam giác MDB có:
DB là cạnh chung
MDBˆMDB^=DBAˆDBA^(vì MD//AB)
ADBˆADB^=DBMˆDBM^(vì xy//BC)
=>Tam giác ABD=Tam giác MDB(g.c.g)
=>DM=AB.
Kẻ E với C.Xét tam giác AEM và tam giác MCA có:
AM là cạnh chung
ACEˆACE^=CAMˆCAM^)(vì ME//AC)
EAMˆEAM^=AMCˆAMC^(vì xy//BC)
=>Tam giác AEM=Tam giác MCA(g.c.g)
=>ME=AC
Xét tam giác ABC và tam giác MDE có:
DM=AB(c/m trên)
ME=AC(c/m trên)
BACˆBAC^=
win-lê chí cường làm ik
Phương- chuẩn bị làm đệ anh đi