K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9

Ta có: A = 9²³ + 5 * 3⁴³

A = (3²)²³ + 5 * 3⁴³

A = 3\(^{46}\) + 5 * 3⁴³

A = 3⁴³ * (3³ + 5 * 1)

A = 3⁴³ * (27 + 5)

A = 3⁴³ * 32

⇒ A ⋮ 32

Vậy A ⋮ 32

16 tháng 12 2019

Ta có: 923=346

A=346+5.343

A=343.27+343.5

A=343.32

Vậy A chia hết cho 32(đpcm)

13 tháng 12 2019

A=9^23 + 5 x 3^43

A=(3^2)^23 + 5 x 3 ^43

A=3^46+5x3^43

A=3^43(3^3+5)

A=3^43(27 + 5)

A=3^43x32

vì 32 chia hết cho 32

vậy A chia hết cho 32

NV
22 tháng 12 2022

\(A=\left(3^2\right)^{23}+5.3^{43}=3^{46}+5.3^{43}=3^{43}\left(3^3+5\right)=32.3^{43}⋮32\) (đpcm)

28 tháng 12 2020

Dễ mà

\(A=9^{23}+5\cdot3^{43}\)

\(A=3^{46}+5\cdot3^{43}\)

\(A=3^{43}\cdot\left(3^3+5\right)\)

\(A=3^{43}\cdot32\) dễ thấy không chia hết cho 23

=> đề sai

b)

P là số nguyên tố lớn hơn 3

=> p không chia hết cho 3

=> p chia 3 dư 1 hoặc p chia 3 dư 2

=> p=3K+1 hoặc p=3K+2       (K\(\in\)\(ℕ^∗\))

+ p=3K+1

(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)

+p=3K+2

(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)

Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)

Ta có: p nguyên tố lớn hơn 3

=> P là số lẻ

p-1 là số chẵn

p+1 là số chẵn

=> (p-1).(p+1) chia hết cho 8 (b) 

Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5