K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

A = 5 . 7 . 9 . 11 + 15 . 17 . 19

5 . 7 . 9 . 11 \(⋮\)5 và 15 . 17 . 19 \(⋮\)5

=> A = 5 . 7 . 9 . 11 + 15 . 17 . 19 \(⋮\)5

=> A là hợp số

27 tháng 10 2019

Trả lời :

A = 5.7.9.11 + 15.17.19

Ta thấy :

 5.( 7.9.11 ) \(⋮\)5 và 15.( 17.19 ) \(⋮\)5

\(\Rightarrow\)A = 5.7.9.11 + 15.17.19 \(⋮\)5

\(\Rightarrow\)A là hợp số .

   - Study well -

31 tháng 10 2018

vì 5.7.9.11 chia hết cho 5 và 15.17.19 chia hết cho 5 => 5.7.9.11+15.17.19 chia hết cho 5

=> A là hợp số

31 tháng 10 2018

1 đầu tiên bạn tính ra kết quả 

2 so sánh ở dưới trang cuối cùng của sánh giáo khoa toán 6 tập 1 vì ở đó có bảng số nguyên tố nha

mình không tính được ne cứ làm như bước trên nha

học tốt

15 tháng 11 2015

A=13.15.19+21.27.23=13.3.5.19+3.7.27.23

  = 3.(13.5.19+7.27.23) chia hết cho 3

=> A là hợp số

 

B=5.7.9.11-10.17.4=5.7.9.11-5.2.17.4

B=5.(7.9.11-2.17.4) chia hết cho 5

=>B là hợp số 

Tick nha bạn

5 tháng 4 2020

a) 109+2 =10....02 \(⋮\)

Vì 1+0+0+....+2=3

b) 5.7.9.11 chia hết cho 3 (vì 9 chia hết cho 3)

104.105.106 chia hết cho 3 (vì 105 chia hết cho 3)

=> 5.7.9.11+104.105.106 là hợp số

17 tháng 2 2020

Vì p là số nguyên tố lớn hơn 3 nên p là số nguyên tố lẻ

=> Tổng p+2021 là số chẵn

Mà p+2021>2 nên p+2021 là hợp số

Vậy p+2021 là họp số.

15 giờ trước (10:23)

Bài 1:

a: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+1 thì 8p+1=8(3k+1)+1=24k+8+1=24k+9=3(8k+3)⋮3

=>Loại

=>p=3k+2

4p+1=4(3k+2)+1

=12k+8+1

=12k+9

=3(4k+3)⋮3

=>4p+1 là hợp số

b: TH1: p=3

\(2p^2+1=2\cdot3^2+1=2\cdot9+1=18+1=19\) là số nguyên tố

=>Nhận

\(7p+2=7\cdot3+2=21+2=23\) là số nguyên tố

TH2: p=3k+1

\(2p^2+1=2\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1\)

\(=18k^2+12k+2+1=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3

=>Loại

TH3: p=3k+2

\(2p^2+1=2\left(3k+2\right)^2+1\)

\(=2\left(9k^2+12k+4\right)+1\)

\(=18k^2+24k+8+1=18k^2+24k+9=3\left(6k^2+8k+3\right)\) ⋮3

=>Loại

13 giờ trước (12:50)

Bài 1

a) Cho \(p\) là số nguyên tố lớn hơn 3. Chứng minh rằng \(8 p + 1\) là số nguyên tố. Chứng minh \(4 p + 1\) là hợp số.

Chứng minh \(8 p + 1\) là số nguyên tố:

  • Ta có \(p\) là số nguyên tố lớn hơn 3, vậy \(p \geq 5\).
  • Xét biểu thức \(8 p + 1\). Ta sẽ thử một số giá trị của \(p\):
    • Nếu \(p = 5\), ta có:
      \(8 p + 1 = 8 \left(\right. 5 \left.\right) + 1 = 41\)
      \(41\) là số nguyên tố.
    • Nếu \(p = 7\), ta có:
      \(8 p + 1 = 8 \left(\right. 7 \left.\right) + 1 = 57\)
      \(57\) không phải là số nguyên tố vì \(57 = 3 \times 19\).
    • Nếu \(p = 11\), ta có:
      \(8 p + 1 = 8 \left(\right. 11 \left.\right) + 1 = 89\)
      \(89\) là số nguyên tố.

Vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(8 p + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi \(p\). Nên bài toán này có thể cần điều kiện bổ sung hoặc có thể có lỗi trong cách đặt bài toán.

Chứng minh \(4 p + 1\) là hợp số:

  • Ta có \(p \geq 5\), vậy xét \(4 p + 1\):
    • Nếu \(p = 5\), ta có:
      \(4 p + 1 = 4 \left(\right. 5 \left.\right) + 1 = 21\)
      \(21\) là hợp số vì \(21 = 3 \times 7\).
    • Nếu \(p = 7\), ta có:
      \(4 p + 1 = 4 \left(\right. 7 \left.\right) + 1 = 29\)
      \(29\) là số nguyên tố.
    • Nếu \(p = 11\), ta có:
      \(4 p + 1 = 4 \left(\right. 11 \left.\right) + 1 = 45\)
      \(45\) là hợp số vì \(45 = 3 \times 15\).

Như vậy, không phải mọi giá trị của \(p\) thỏa mãn điều kiện \(p\) đều tạo ra \(4 p + 1\) là hợp số. Ta không thể chứng minh điều này cho mọi \(p\) mà không có điều kiện bổ sung.


b) Chứng minh \(p\) và \(2 p^{2} + 1\) là các số nguyên tố. Hỏi \(7 p + 2\) là số nguyên tố hay hợp số?

Giả sử \(p\) là số nguyên tố và \(2 p^{2} + 1\) là số nguyên tố. Ta sẽ thử một số giá trị của \(p\).

  • Nếu \(p = 5\), ta có:
    \(2 p^{2} + 1 = 2 \left(\right. 5 \left.\right)^{2} + 1 = 2 \left(\right. 25 \left.\right) + 1 = 51\)
    \(51\) không phải là số nguyên tố vì \(51 = 3 \times 17\).
    Như vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(2 p^{2} + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi giá trị của \(p\).

Bài 2

Cho số tự nhiên \(n > 2\) và không chia hết cho 3. Chứng minh rằng hai số \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.

Chứng minh:

  • Gọi \(p = n^{2} - 1\) và \(q = n^{2} + 1\).
  • Ta biết \(p = n^{2} - 1 = \left(\right. n - 1 \left.\right) \left(\right. n + 1 \left.\right)\).
    • Nếu \(n\) là số nguyên lớn hơn 2, thì \(p = n^{2} - 1\) sẽ là một tích của hai số nguyên lớn hơn 1, do đó \(p\)là hợp số, không phải là số nguyên tố.
  • Do đó, \(p = n^{2} - 1\) không thể là số nguyên tố.
  • Tiếp theo, ta xét \(q = n^{2} + 1\).
    • \(n^{2} + 1\) có thể là số nguyên tố hoặc hợp số tùy thuộc vào giá trị của \(n\), nhưng không thể có cả \(p = n^{2} - 1\) và \(q = n^{2} + 1\) cùng là số nguyên tố.

Kết luận: Do \(p = n^{2} - 1\) không thể là số nguyên tố, nên \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.


Bài 3

Ta gọi \(p\) và \(q\) là hai số nguyên tố liên tiếp nếu giữa \(p\) và \(q\) không có số nguyên tố nào khác (ví dụ: \(7\) và \(11\) là hai số nguyên tố liên tiếp). Tìm ba số nguyên tố liên tiếp \(p\)\(q\)\(r\) sao cho \(p^{2} + q^{2} + r^{2}\) cũng là số nguyên tố.

Giải:

Ta sẽ thử một số bộ ba số nguyên tố liên tiếp nhỏ:

  • Nếu \(p = 3\)\(q = 5\)\(r = 7\), ta có:
    \(p^{2} + q^{2} + r^{2} = 3^{2} + 5^{2} + 7^{2} = 9 + 25 + 49 = 83\)
    \(83\) là số nguyên tố.

Vậy ba số nguyên tố liên tiếp \(p = 3\)\(q = 5\)\(r = 7\) thỏa mãn điều kiện bài toán, vì \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.

Kết luận: Ba số nguyên tố liên tiếp \(p = 3\)\(q = 5\)\(r = 7\) sao cho \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.

8 tháng 1 2019

hop so

21 tháng 1 2019

va snt luon