
Chúc bạn học tốt !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúc bạn học tốt !
Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu
Cách 1:
Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)
=>\(\widehat{FON}+250^0=360^0\)
=>\(\widehat{FON}=110^0\)
\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)
mà \(\widehat{FON}=110^0\)
nên \(\widehat{EOM}=110^0\)
\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)
=>\(\widehat{EON}+110^0=180^0\)
=>\(\widehat{EON}=70^0\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)
\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)
=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)
Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)
nên từ (1),(2) ta sẽ có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)
mà \(\widehat{EOM}=110^0\)
nên \(\widehat{FON}=110^0\)
1. Do góc BOC kề bù với góc AOB
=> Tia OA và tia OC đối nhau
Do góc AOD và góc AOB kề bù
=> tia OD và tia OB đối nhau
=> góc BOC và góc AOD là 2 góc đối đỉnh
Gọi OM, ON là 2 tia phân giác góc AOD và góc BOC
=> góc AOM = 1/2 góc AOD = 1/2 (180* - 135*) = 45*/2
mà góc AON = góc AOB + góc BON
=> góc AON = 135* + 45*/2
=> góc AOM + góc AON = 135* + 45*/2 + 45*/2 = 180*
=> góc MON = 180*
=> OM , ON là 2 tia đối nhau
1:
góc AOC=góc BOD
góc AOC+góc BOD=130 độ
=>góc AOC=góc BOD=130/2=65 độ
góc AOD=góc BOC=180-65=115 độ
2:
a: góc x'Oy'=góc xOy=60 độ
góc xOy'=góc x'Oy=180-60=120 độ
b: góc xOm=60/2=30 độ
góc x'On=60/2=30 độ
=>góc xOm=góc x'On
=>góc xOm+góc xOn=180 độ
=>Om và On là hai tia đối nhau
Sửa đề: \(\hat{\frac{xOm}{\hat{mOy}}}=\frac27\)
Ta có: \(\frac{\hat{xOm}}{\hat{yOm}}=\frac27\)
=>\(\hat{yOm}=3,5\cdot\hat{xOm}\)
ta có: \(\hat{xOm}+\hat{yOm}=180^0\) (hai góc kề bù)
=>\(\hat{xOm}+3,5\cdot\hat{xOm}=180^0\)
=>\(4,5\cdot\hat{xOm}=180^0\)
=>\(\hat{xOm}=180^0:4,5=40^0\)
\(\hat{yOm}=40^0\cdot3,5=140^0\)
Ta có: \(\hat{xOm}=\hat{yOn}\) (hai góc đối đỉnh)
mà \(\hat{xOm}=40^0\)
nên \(\hat{yOn}=40^0\)
Ta có: \(\hat{yOm}=\hat{xOn}\) (hai góc đối đỉnh)
mà \(\hat{yOm}=140^0\)
nên \(\hat{xOn}=140^0\)