Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

Bài này trong SBT mà = Sau có giải ko nhỉ ( mình ko dùng nó)
a)
A có nghĩa khi x +2 >/ 0 => x >/ -2
và x -3 >/ 0 => x >/ 3
=>x >/ 3
B có nghĩa khi (x+2(x-3) >/ 0 => x</ -2 hoặc x >/ 3
b) A = B => x >/ 3
a) A có nghĩa khi:
\(\left(x+1\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\x-3\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\ge3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\le3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-1\end{matrix}\right.\)
b) Ta có:
\(B=\sqrt{x+1}\cdot\sqrt{x-3}=\sqrt{\left(x+1\right)\left(x-3\right)}\)
Nên: A=B nên tập nghiệm xác định như nhau
c) \(A=B\) khi:
\(\sqrt{\left(x+1\right)\left(x-3\right)}=\sqrt{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow1=1\) (luôn đúng)
\(\Rightarrow x\in R\)