Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,Cứ 1 điểm tạo với 9 điểm còn lại 9 đường thẳng
Với 10 điểm ta có : 9. 10 = 90 đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Số đường thẳng được tạo là : 90 : 2 = 45 ( đường thẳng)
b, Cứ 1 điểm tại với n - 1 điểm còn lại số đường thẳng là:
n - 1 đường thẳng
Với n điểm ta có (n-1).n đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Vậy với n điểm trong đó không có 3 điểm nào thẳng hàng thì sẽ tạo được số đường thẳng là: (n-1).n:2
Theo bài ra ta có: (n-1).n : 2 = 28
(n-1).n = 56
(n-1).n = 7 x 8
n = 8
Kết luận n = 8 thỏa mãn yêu cầu đề bài

a: Số điểm còn lại là 20-6=14(điểm)
TH1: Chọn 1 điểm trong 6 điểm thẳng hàng; chọn 1 điểm trong 14 điểm không thẳng hàng
Số đường thẳng vẽ được là \(6\cdot14=84\) (đường)
TH2: Chọn 2 điểm bất kì trong 14 điểm không thẳng hàng
Số đường thẳng vẽ được là: \(\frac{14\left(14-1\right)}{2}=14\cdot\frac{13}{2}=7\cdot13=91\) (đường)
TH3: Chọn 2 điểm bất kì trong 6 điểm thẳng hàng
=>Số đường thẳng vẽ được là 1 đường thẳng
Tổng số đường thẳng vẽ được là:
84+91+1=176(đường)
b: Số điểm còn lại là n-7(điểm)
TH1: Chọn 1 điểm trong 7 điểm thẳng hàng; chọn 1 điểm trong n-7 điểm không thẳng hàng
Số đường thẳng vẽ được là 7(n-7)(đường)
TH2: Chọn 2 điểm trong n-7 điểm không thẳng hàng
Số đường thẳng vẽ được là: \(\frac{\left(n-7\right)\left(n-7-1\right)}{2}=\frac{\left(n-7\right)\left(n-8\right)}{2}\) (đường)
TH3: Chọn 2 điểm trong 7 điểm thẳng
=>Số đường thẳng vẽ được là 1 đường
Tổng số đường thẳng vẽ được là 211 đường nên ta có:
\(7\left(n-7\right)+\frac{\left(n-7\right)\left(n-8\right)}{2}+1=211\)
=>\(\frac{14\left(n-7\right)+\left(n-7\right)\left(n-8\right)}{2}=210\)
=>14(n-7)+(n-7)(n-8)=420
=>(n-7)(n+6)=420
=>\(n^2-n-42-420=0\)
=>\(n^2-n-462=0\)
=>(n-22)(n+21)=0
=>\(\left[\begin{array}{l}n-22=0\\ n+21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}n=22\left(nhận\right)\\ n=-21\left(loại\right)\end{array}\right.\)
vậy: n=22
a, Khi có 20 điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là 20.(20−1)2=10.19=190(đường thẳng).
Tuy nhiên trong 20 điểm phân biệt đó có đúng 6 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 6 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 6 điểm đó là 6.52=15(đường thẳng).
+ Nếu 6 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 6 điểm đó.
Do đó số đường thằng đi qua 6 điểm thằng hàng đã được tính thành 15 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với 20 điểm phân biệt trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
190 – 15 + 1 = 176(đường thẳng).
Vậy vẽ được 176 đường thẳng từ 20 điểm đó.
b
Khi có n điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là n(n−1)2 (đường thẳng).
Tuy nhiên trong n điểm phân biệt đó có đúng 7 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 7 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 7 điểm đó là 7.62=21(đường thẳng).
+ Nếu 7 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 7 điểm đó.
Do đó số đường thằng đi qua 7 điểm thằng hàng đã được tính thành 21 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với n điểm phân biệt trong đó có đúng 7 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
n(n−1)2−21+1=n(n−1)2−20 (đường thẳng).
Mà có tất cả 211 đường thẳng
Do đó n(n−1)2−20=211
Hay n(n−1)2=231
Nên n(n – 1) = 462 = 22 . 21
Suy ra n = 22
Vậy có 22 điểm phân biệt.

1) Ta đặt đường thẳng là mốc
Ta cắt được 100 -1 = 99 (đường thẳng)
Ta có 100 đường thẳng vai trò như thế.
Thì ta có : 100 x 99 (đường)
Mà số đường thẳng lặp lại là một nửa
thì ta có: 100 x 99 : 2 = 4950 (đường thẳng)
2) Nếu có 3 điểm thằng hàng thì ta mất : 3 x 2 : 2,= 3 (đường) (ta dùng công thức như trên)
Thì trong 3 điểm thẳng hàng ta lại có 1 đường thẳng.
Thì ta mất: 3 - 1= 2(đường)
Vậy sô đường thẳng còn lại là:
4950 - 2 = 4948 (đường thẳng)

a) có 499500 đường thẳng ta có công thức n x (n-1) chia 2
b)có 499498 đường thẳng nếu co 3 điểm thẳng hàng
Lời giải:
Cho 10 điểm thì nếu không có 3 điểm nào thẳng hàng ta sẽ vẽ được:
$10(10-1):2=45$ (đường thẳng)
Xét riêng 3 điểm thẳng hàng. Thông thường từ 3 điểm này ta sẽ vẽ được: $3(3-1):2=3$ đường thẳng, nhưng vì thẳng hàng nên ta chỉ vẽ được 1
Do đó số đường thẳng tạo thành: $45-3+1=43$ (đường thẳng)
Mỗi bài bạn chỉ nên đăng 1 lần, tránh spam box toán nhé.