Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).
Theo bài ta có phương trình :
\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)
\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)
\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)
\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)
\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))
\(\Leftrightarrow n=18\)
Vậy đa giác đều có 16 cạnh, (thập lục giác đều)

Mình sẽ tóm tắt và giải từng ý nhé.
Đề cho: Hình chóp S.ABCD, đáy ABCD là tứ giác.
M nằm trong tam giác SBC, N nằm trong tam giác SCD.
a) Giao tuyến của (AMN) và (ABCD)
- A thuộc (AMN) và A cũng thuộc đáy (ABCD).
- M thuộc (AMN) nhưng M thuộc cạnh SB nên không nằm trên đáy.
- N thuộc (AMN) nhưng N thuộc cạnh SD cũng không nằm trên đáy.
→ Để tìm giao tuyến, ta cần 2 điểm chung. Điểm A có rồi, điểm thứ hai là giao điểm của MN với đáy (ABCD) nếu có.
Nhưng MN nối M (SB) và N (SD), cả hai không thuộc đáy, nên để tìm điểm đó ta phải xét: SB và SD giao đáy tại B và D, nối BD cắt MN tại một điểm I. I thuộc đáy, I thuộc MN, nên I ∈ (AMN) ∩ (ABCD).
→ Giao tuyến chính là AI.
b) Giao điểm của MN với (SAC)
- M thuộc SB, N thuộc SD, mặt phẳng (SAC) chứa S, A, C.
- SB và SD đều nằm trong (SBD), không phải (SAC), nhưng đường MN có thể cắt (SAC) tại điểm P. Để tìm P, ta tìm giao điểm của MN với đường SC (vì SC nằm trong cả (SAC) và chứa điểm từ M→N theo hướng hợp lý).
c) Giao điểm của SC với (AMN)
- SC nằm trong (SAC).
- Mặt phẳng (AMN) chứa A, M, N. Để tìm giao điểm Q, ta xét SC cắt MN hoặc cắt một đường trong (AMN). Trong trường hợp này SC và MN có thể cắt nhau tại chính điểm P đã tìm ở câu b).
Tóm lại:
a) AI (I là MN ∩ BD)
b) P = MN ∩ (SAC) (thường là trên SC)
c) Cùng điểm P đó
Nếu bạn muốn mình vẽ hình minh họa để nhìn rõ hơn mình có thể làm ngay.
Cho mình xin 1 tick với ạ

Theo giả thiết ta có hệ : \(\begin{cases}A=90^0\\a,b,\frac{\sqrt{6}}{3},c\end{cases}\)\(\Leftrightarrow\begin{cases}a^2=b^2+c^2\\\frac{2}{3}b^2=ac\Leftrightarrow b^2=\frac{3}{2}ac\end{cases}\)
Từ đó suy ra \(a^2=\frac{3}{2}ac+c^2\Leftrightarrow2a^2=3ac+2c^2\Leftrightarrow\left(2a+c\right)\left(a-2c\right)=0\)
\(\Rightarrow a=2c\left(2a+c>0\right)\)
Mà \(\cos B=\frac{c}{a}=\frac{1}{2}\Rightarrow B=60^0,C=30^0\)
Vậy tam giác ABC là tam giác nửa đều

(la) A E D B C G F c b
Đặt \(\overrightarrow{AB}=\overrightarrow{b,}\overrightarrow{AC}=\overrightarrow{c,}t=\frac{BF}{FC}\)
Khi đó, \(\overrightarrow{AE}=p,\overrightarrow{AD}=q\overrightarrow{c},p,q\in\left(0;1\right)\) và
\(\overrightarrow{AF}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t};\overrightarrow{AG}=\frac{t\overrightarrow{AD}+\overrightarrow{AE}}{1+t}=\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)
Mặt khác, do BE = tCD suy a \(\left(1-p\right)\left|b\right|=t\left(1-q\right)\left|\overrightarrow{c}\right|\)
Từ đó, với chú ý đường phân giác \(l_a\) có vec tơ chỉ phương là \(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\)
Suy ra :
\(\overrightarrow{GF}=\overrightarrow{AF}-\overrightarrow{AG}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t}-\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)
\(=\frac{t\left(1-q\right)}{1+t}.\overrightarrow{c}+\frac{1-p}{1+t}.\overrightarrow{b}\)
\(=\frac{\left(1-q\right)\left|b\right|}{1+t\overrightarrow{ }}\left(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\right)=\frac{\left(1-q\right)\left|\overrightarrow{b}\right|}{1+t}.\overrightarrow{AL}\)
=> Điều phải chứng minh
Từ giả thiết suy ra với mọi điểm O đều có :
\(\overrightarrow{OP}=\frac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\), \(\overrightarrow{ON}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OI}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OE}\right)\)
\(\overrightarrow{OM}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)\), \(\overrightarrow{OQ}=\frac{1}{2}\left(\overrightarrow{OD}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OJ}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OD}+\overrightarrow{OE}\right)\)
Từ đó suy ra \(\overrightarrow{JI}=\frac{1}{4}\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\Rightarrow\) IJ // CD => Điều phải chứng minh

a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED

a)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra:
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó
(2;-3),
(5;-4),
(3;-1) là đáp số cần tìm.
a) (hình bên)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b) ( hình 1.26)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó
(2;-3),
(5;-4),
(3;-1) là đáp số cần tìm
Đáp án C
Số cách lấy 3 điểm từ 10 điểm trên là
.
Số cách lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 là:
Khi lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 thì sẽ không tạo thành tam giác.