
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi O là giao của AC và BD
Xét ΔODE vuông tại D và ΔOCE vuông tại C có
OE chung
ED=EC
Do đó: ΔODE=ΔOCE
=>OD=OC
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc OBA=góc ODC
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD
mà OC=OD
nên OA=OB
AC=AO+OC
BD=BO+OD
mà AO=BO và CO=DO
nên AC=BD
Xét tứ giác ABCD có
AB//CD
AC=BD
Do đó: ABCD là hình thang cân

a: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân

a: Xét ΔABC có
N là trung điểm của AC
K là trung điểm của BC
Do đó: NK là đường trung bình của ΔABC
Suy ra: NK//AB
Xét tứ giác ANKB có KN//AB
nên ANKB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANKB là hình thang vuông

Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC