
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)a7+7a^6b+21a^5b^2+35a^4b^3+21a^2b^5+7ab^6+b^7
b)a^10+10a^9b+45a^8b^2+120a^7b^3+210a^6b^4+252a^5b^5+210a^4b^6+120a^3b^7+45a^2b^8+10ab^9+b^10
c,d,e tuongtu
P/s:Ok you gioi, tui bt v nen dung dang cai thua mak ko hieu
a ) ( a + b ) 7 = a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7
b ) ( a + b ) 10 = a10 + 10a9b + 45a8b2 + 120a7b3 + 210a6b4 + 252a5b5 + 210a4b6 + 120a3b7 + 45a2b8 + 10ab9 + b10
c ) ( a + b ) 12 = a12 + 12a11b + 66a10b2 + 220a9b3 + 495a8b4 + 792a7b5 + 924a6b6 + 792a5b7 + 495a4b8 + 220a3b9 + 66a2b10 + 12ab11 + b12
d ) ( a + b ) 15 = a15 + 15a14b + 105a13b2 + 455a12b3 + 1365a11b4 + 3003a10b5 + 5005a9b6 + 6435a8b7 + 6435a7b8 + 5005a6b9 + 3003a5b10 + 1365a4b11 + 455a3b12 + 105a2b13 + 15ab14 + b15
HẰNG ĐẲNG THỨC CÒN LẠI BẠN TỰ LÀM NHÉ !!! MÌNH NGẠI ĐÁNH MÁY LẮM .

Ta có : \(a+b+c=2016\Rightarrow\frac{1}{a+b+c}=\frac{1}{2016}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{abc\left(a+b+c\right)}\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c^2+ac+bc+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a+b=0\\b+c=0\\c+a=0\end{array}\right.\)
- Nếu a + b = 0 => c = 2016 (1)
- Nếu b + c = 0 => a = 2016 (2)
- Nếu a + c = 0 => b = 2016 (3)
Từ (1) , (2) và (3) ta có điều phải chứng minh.

\(A^5-B^5=\left(A-B\right)\cdot\left(A^4+A^3\cdot B+A^2\cdot B^2+A\cdot B^3+B^4\right)\\ A^6-B^6=\left(A-B\right)\cdot\left(A^5+A^4\cdot B+A^3\cdot B^2+A^2\cdot B^3+A\cdot B^4+B^5\right)\\ A^{10}-B^{10}=\left(A-B\right)\cdot\left(A^9+A^8\cdot B+A^7\cdot B^2+A^6\cdot B^3+A^5\cdot B^4+A^4\cdot B^5+A^3\cdot B^6+A^2\cdot B^7+A\cdot B^8+B^9\right)\\ A^n-B^n=\left(A-B\right)\cdot\left(A^{n-1}+A^{n-2}\cdot B+A^{n-3}\cdot B^2+...+A^2\cdot B^{n-3}+A\cdot B^{n-2}+B^{n-1}\right)\)

Đặt \(\left(a,b,c\right)\rightarrow\left(\frac{x}{y},\frac{y}{z},\frac{z}{x}\right)\)
\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)
\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\)\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{9}{4}\)
Đẳng thức xảy ra khi a = b = c = 1
Bài 1: Bổ đề: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(P=\frac{1}{\sqrt{2}}\left(\sqrt{4a^2+2ab+4b^2}+\sqrt{4b^2+2bc+4c^2}+\sqrt{4c^2+2ca+4a^2}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{3\left(a^2+b^2\right)+\left(a+b\right)^2}+\sqrt{3\left(b^2+c^2\right)+\left(b+c\right)^2}+\sqrt{3\left(c^2+a^2\right)+\left(c+a\right)^2}\right)\)
\(\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{3}{2}\left(a+b\right)^2+\left(a+b\right)^2}+\sqrt{\frac{3}{2}\left(b+c\right)^2+\left(b+c\right)^2}+\sqrt{\frac{3}{2}\left(c+a\right)^2+\left(c+a\right)^2}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\frac{5}{2}\left(a+b\right)^2}+\sqrt{\frac{5}{2}\left(b+c\right)^2}+\sqrt{\frac{5}{2}\left(c+a\right)^2}\right)\)
\(=\frac{1}{\sqrt{2}}.\frac{\sqrt{5}}{\sqrt{2}}+\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\)\(=\frac{\sqrt{5}}{2}.2\left(a+b+c\right)=\sqrt{5}.2020\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2020}{3}\)

Bài 2:
a)\(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b)\(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=x\left(x-5\right)+3\left(x-5\right)\)
c)\(y\left(x-z\right)+7\left(z-x\right)\)
\(=7\left(z-x\right)-y\left(z-x\right)\)
\(=\left(7-y\right)\left(z-x\right)\)
\(=\left(x-5\right)\left(x+3\right)\)
d)\(36-12x+x^2\)
\(=x^2-12x+36\)
\(=\left(x-6\right)^2\)
Bài 1:
a)\(2x\left(x^2-7x-3\right)=2x^3-14x^2-6x\)
b)\(\left(-2x^3+34y^2-7xy\right)\cdot4xy^2=136xy^4-28x^2y^3-8x^4y^2\)
c)\(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
d)\(\left(2x^3-3x-1\right)\left(5x+2\right)\)
\(=5x\left(2x^3-3x-1\right)+2\left(2x^3-3x-1\right)\)
\(=10x^4-15x^2-5x+4x^3-6x-2\)
\(=10x^4+4x^3-15x^2-11x-2\)

Bài 1:
1 (x+3)2=x2+6x+9
2
a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3
b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x
Bài 2:
a, x2-25x=0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)
b, (4x-1)2-9=0
\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)
\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)
\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)
Bài 3:
a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2
b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)
c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)
Bài 4:
a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)
=2x-1/2 + 2/3y
b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho
Bài 5 :
b, A = x(2x-3)
A= 2x2-3x
A= 2(x2-3/2x)
A= 2(x2-2x3/4+9/16-9/16)
A=2[(x-3/4)2-9/16]
A=2(x-3/4)2-9/8
A=2(x-3/4)2+(-9/8)
Vì (x-3/4)2 \(\ge\)0 \(\forall x\)
-> 2(x-3/4)2 \(\ge0\forall x\)
-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)
Vậy MinA= -9/8
Bài 1:
1. Khai triển hằng đẳng thức
(x+3)2 = x2+6x+9
2. Thực hiện phép tính
a) 2x2(3x-5x3)+10x5-5x3
=6x3-10x5+10x5-5x3
=x3
b)(x+3)(x2-3x+9)+(x-9)(x+3)
=(x3+27)+(x2+3x-9x-27)
=x3+27+x2+3x-9x-27
=x3+x2-6x
Bài 2:
a) x2-25x=0
\(\Leftrightarrow\)x(x-25)=0
\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)
Vậy x=0 hoặc x=25
b)(4x-1)2 - 9=0
\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0
\(\Leftrightarrow\)(4x+2)(4x-4)=0
\(\Leftrightarrow\)2(2x+1)(2x-2)=0
\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)
Vậy x=1 hoặc x=\(\frac{-1}{2}\)
Bài 3:
a) 3x2-18x+27
=3(x2-6x+9)
=3(x-3)2
b) xy-y2-x+y
=(xy-y2)-(x-y)
=y(x-y)-(x-y)
=(x-y)(y-1)
c) x2-5x-6
=x2-6x+x-6
=(x2-6x)+(x-6)
=x(x-6)+(x-6
=(x-6)(x+1)
Bài 4:
a) (12x3y3-3x2y3+4x2y4) : 6x2y3
=x2y3(12x-3+4y): 6x2y3
=(12x-3+4y) : 6
= (12x : 6)-(3 : 6)+(4y : 6)
=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)
b) (6x3-19x2+23x-12) : (2x-3)
=(3x2-5x+4)(2x-3) : (2x-3)
=3x2-5x+4

a)= -(x2 -2x +1) +1 +4
GTLN = 5
b)= -( x2 -4x +4) +4
GTLN = 4
c) = -4( x2 - x/4 + 1/16) +1/4 -5
GTLN = -19/5
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!