Câu hỏi của tớ trong...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

https://i.imgur.com/EDfSREq.png (Link hình ảnh)

[âIMG]

19 tháng 1 2019

ko cóp chữ đc :<

19 tháng 1 2019

nhưng cậu hỏi cái gì mà trả lời??????

19 tháng 1 2019

Câu trả lời gì bạn hay bạn yêu mik

Bài 8:

a: \(5^3=125;3^5=243\)

mà 125<243

nên \(5^3<3^5\)

b: \(7\cdot2^{13}<8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)

c: \(27^5=\left(3^3\right)^5=3^{3\cdot5}=3^{15}\)

\(243^3=\left(3^5\right)^3=3^{5\cdot3}=3^{15}\)

Do đó: \(27^5=243^5\)

d: \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)

mà 20<21

nên \(625^5<125^7\)

Bài 9:

a: \(3^{x}\cdot5=135\)

=>\(3^{x}=\frac{135}{5}=27=3^3\)

=>x=3(nhận)

b: \(\left(x-3\right)^3=\left(x-3\right)^2\)

=>\(\left(x-3\right)^3-\left(x-3\right)^2=0\)

=>\(\left(x-3\right)^2\cdot\left\lbrack\left(x-3\right)-1\right\rbrack=0\)

=>\(\left(x-3\right)^2\cdot\left(x-4\right)=0\)

=>\(\left[\begin{array}{l}x-3=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=4\left(nhận\right)\end{array}\right.\)

c: \(\left(2x-1\right)^4=81\)

=>\(\left[\begin{array}{l}2x-1=3\\ 2x-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4\\ 2x=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-1\left(loại\right)\end{array}\right.\)

d: \(\left(5x+1\right)^2=3^2\cdot5+76\)

=>\(\left(5x+1\right)^2=9\cdot5+76=45+76=121\)

=>\(\left[\begin{array}{l}5x+1=11\\ 5x+1=-11\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=10\\ 5x=-12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-\frac{12}{5}\left(loại\right)\end{array}\right.\)

e: \(5+2^{x-3}=29-\left\lbrack4^2-\left(3^2-1\right)\right\rbrack\)

=>\(2^{x-3}+5=29-\left\lbrack16-9+1\right\rbrack\)

=>\(2^{x-3}+5=29-8=21\)

=>\(2^{x-3}=16=2^4\)

=>x-3=4

=>x=4+3=7(nhận)

f: \(3+2^{x-1}=24-\left\lbrack4^2-\left(2^2-1\right)\right\rbrack\)

=>\(2^{x-1}+3=24-\left\lbrack16-4+1\right\rbrack=24-13=11\)

=>\(2^{x-1}=11-3=8=2^3\)

=>x-1=3

=>x=4(nhận)

Bài 6:

a: \(5\cdot5\cdot5\cdot5\cdot5\cdot5=5^6\)

b: \(27\cdot14\cdot7\cdot2=27\cdot14\cdot14=3^3\cdot14^2\)

c: \(x\cdot x\cdot x\cdot y=x^3\cdot y\)

d: \(5^3\cdot5^4=5^{3+4}=5^7\)

e: \(7^8:7^2=7^{8-2}=7^6\)

f: \(42^7:6^7\cdot49=7^7\cdot49=7^7\cdot7^2=7^{7+2}=7^9\)

15 tháng 5 2017

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\\ =\dfrac{200-\left(2+1+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{99}{100}\right)}\\ =\dfrac{200-2-1-\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-...-\dfrac{2}{100}}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot99-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =2\)

15 tháng 5 2017

Đề nhỏ quá!! mà t 4 mắt. cẩn thận

Đặt :

\(A=\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+.............+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....................+\dfrac{99}{100}}\)

\(A=\dfrac{200-2-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+..............+\dfrac{2}{100}\right)}{1-\dfrac{1}{2}+1-\dfrac{1}{3}+.................+1-\dfrac{1}{100}}\)

\(A=\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+..................+\dfrac{2}{100}\right)}{\left(1+1+.....+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+...........+\dfrac{1}{100}\right)}\)

\(A=\dfrac{2\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+.............+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+..............+\dfrac{1}{100}\right)}\)

\(A=2\)

Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+............+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...............+\dfrac{99}{100}}=2\rightarrowđpcm\)

30 tháng 6 2016

xem ai thông minh, tinh mắt nhất có thể luận ra toàn bộ đề và giúp mk giải nào!! hehe

30 tháng 6 2016

Mình chả thấy gì cả oholimdim

đầy đủ câu trả lời mới đc nhé các bạn!

17 tháng 10 2024

1.b

2.d

3.c

4.a

5.a

6.a

7.b

8.c

9.a

10.c

14 tháng 5 2017

Từ đề bài ta có:

\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{100}{2}\)

\(=50\).

15 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)

9 tháng 11 2017

Gọi \(ƯC\left(2n+1;3n+2\right)=d\)

Ta có: \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\)

hay \(6n+3⋮d\) (2)

và \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\)

hay \(6n+4⋮d\) (2)

Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)

Vậy \(ƯC\left(2n+1;3n+2\right)\)là 1

9 tháng 11 2017

\(ƯC=\left(2n+1,3n+2\right)=a\)

\(2n+1⋮d\Leftrightarrow2\left(3n+2\right)⋮d\)

\(6n+3⋮a\left(1\right)\)

\(6n+4⋮a\left(2\right)\)

Từ (1) và (2) suy ra, ta có:

\(\left(6n+4\right)-\left(6n+3\right)=a\)

\(\Rightarrow1⋮a=a=1\)

=> ƯC(2n+1;3n+2)=1

<3

14 tháng 5 2017

\(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+...+\dfrac{3^2}{97.100}\)

\(=3\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)

\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=3\left(1-\dfrac{1}{100}\right)\)

\(=3.\dfrac{99}{100}=\dfrac{297}{100}\)

Vậy...

15 tháng 5 2017

\(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{97.100}\)

\(=3\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)

\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=3\left(1-\dfrac{1}{100}\right)=3.\dfrac{99}{100}=\dfrac{297}{100}\)