Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH và DA=DH
b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔDAK=ΔDHC
Suy ra: DK=DC và AK=HC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
d: Ta có: BA=BH
nên B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
nên D nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH

Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau

a/ Xét tam giác OAC và tam giác OBD có
O : góc chung
OA = OB (GT)
OC = OD (GT)
=> tam giác OAC = tam giác OBD ( cạnh góc cạnh )
=>AC = BD (2 cạnh tương ứng)
b/ Xét tam giác IAD và IBC có
-góc C = góc D (vì tam giác OAC=tam giác OBD)
-A = B = 900
-AI = BI (vì AC = BD)
=> tam giác IAD = tam giác IBC (góc cạnh góc)
=>AD=BC (2 cạnh tương ứng)
c/ Xét tam giác OAI và tam giác OBI có
-OA = OB (GT)
-góc AIO = góc OIB
-A = B = 900
=> tam giác OAI = tam giác OBI (cạnh góc cạnh)
=> góc AOI = góc IOB (2 góc tương ứng)
Vậy OI là phân giác của góc O
d/ Gọi OI và AB cắt nhau tại M
Xét tam giác OAM và tam giác OBM có
-AOM = BOM
-OA = OB
-OM: cạnh chung
=> tam giác OAM = tam giác OBM (cạnh góc cạnh)
=> AMO = BMO
Ta có: AMO + BMO = 1800 (kề bù)
Mà AMO = BMO
=> AMO = BMO = 1/2 1800 = 900
Vậy OI là đường trung trực của đoạn AB
e/ Gọi phân giác của góc O cắt CD tại N
Xét tam giác INC = tam giác IND có
IN: cạnh chung
DIN = CIN
ID = IC
=> tam giác INC = tam giác IND (cạnh góc cạnh)
=> INC = IND
Ta có; IND + INC =1800 (kề bù)
Mà INC = IND
=> INC =IND = 1/2 1800 = 900
=> IN là trung trực của CD
Ta có: IN là trung trực của CD
OI là trung trực của AB
=> AB//CD

a) c/m tam giác BMI =CMI (c. g. c)
=>BM=CM(hai cạnh tương ứng)
Xét tam giác BMC có BM=CM (cmt)
=> tam giác BMC cân tại M
b) Xét tam giác ABC có
Góc BAC + gócABC+ góc ACB =180 độ
=>góc ABC=60 độ
Ta lại cos tam giác BMC cân tại M =>gocs MBC=góc C =30 độ
Mà góc ABC =ABM+CBM
=>CBM=ABM=30 độ =1/2ABC
Vậy BM là phân giác của góc ABC
c) c/m tam giác ABM= tam giác ibm( cạnh huyền canh góc vuông)
=> AB=BI
MÀ BI=1/2BC=>AB=1/2BC
d) c/m tam giác BKI=BCA( c. g. c)
=> góc KIB=góc CAB=90 độ
=> KI vuông góc với BC
mà MI cũng vuoong góc với BC
=>3 điểm K,M,I thẳng hàng
A B C D
a) Xét \(\Delta ADB\) và \(\Delta ADC\) ta có:
\(\widehat{BAD}+\widehat{B}+\widehat{BDA}=180^o\)
\(\widehat{DAC}+\widehat{C}+\widehat{CDA}=180^o\)
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)(*)
\(\widehat{BAD}=\widehat{DAC}\) (AD là phân giác)
\(\Rightarrow\widehat{BDA}=\widehat{CDA}\) (**)
AD là cạnh chung. (***)
Vậy: từ (*) (**) (***) ta có \(\Delta ADB\) = \(\Delta ADC\) (g.c.g)
b) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)
\(\Rightarrow AB=AC\) (2 cạnh tương ứng)
c) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)
\(\Rightarrow DB=DC\) (2 cạnh tương ưng)
Mà D thuộc BC (gt)
=> D là trung điểm của BC. (****)
Lại có: AD là tia phân giác góc A (*****)
Từ (****) và (*****) suy ra AD là đường trung trực của BC