Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu c hình như bn nhầm đỉnh tứ giác thì phải
d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé

a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
a: Ta có: ΔOBC cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)BC và OK là phân giác của góc BOC
OK là phân giác của góc BOC
=>\(\widehat{BOK}=\widehat{COK}\)
=>\(\widehat{BOD}=\widehat{COD}\)
Xét ΔOBD và ΔOCD có
OB=OC
\(\widehat{BOD}=\widehat{COD}\)
OD chung
Do đó: ΔOBD=ΔOCD
=>DB=DC
ΔOBD=ΔOCD
=>\(\widehat{OBD}=\widehat{OCD}\)
mà \(\widehat{OBD}=90^0\)
nên \(\widehat{OCD}=90^0\)
=>DC\(\perp\)CO tại C
=>DC là tiếp tuyến của (O)
b: Xét tứ giác CHOK có
\(\widehat{CHO}+\widehat{CKO}=90^0+90^0=180^0\)
nên CHOK là tứ giác nội tiếp đường tròn đường kính CO
=>C,H,O,K cùng thuộc một đường tròn
tâm là trung điểm của CO
Bán kính là \(\dfrac{CO}{2}\)