cần c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

Bài 21:

Gọi độ dài cạnh hình vuông là x(cm)

(Điều kiện: x>0)

Chiều dài hình chữ nhật mới là x+5(cm)

Chiều rộng hình chữ nhật mới là x-5(cm)

Vì chiều dài gấp 2 lần chiều rộng nên x+5=2(x-5)

=>2x-10=x+5

=>2x-x=5+10

=>x=15(nhận)

Chu vi hình vuông là \(15\cdot4=60\left(cm\right)\)

Diện tích hình vuông là \(15^2=225\left(cm^2\right)\)

7 tháng 1 2024

ah giúp em mí bài em mới đăng đc khum ạ, đội ân ah nhiều ngaingung

5 tháng 12 2023

2/

Xét phân số \(\dfrac{2n-3}{n+1}=\dfrac{2n+2-5}{n+1}=\dfrac{2n+2}{n+1}-\dfrac{5}{n+1}=\dfrac{2\left(n+1\right)}{n+1}-\dfrac{5}{n+1}=2-\dfrac{5}{n+1}\)

\(n\in Z\Rightarrow2n-3\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)

Ta có bảng:

2n - 3-1-515
n1-124

Vậy \(n\in\left\{-1;1;2;4\right\}\)

5 tháng 12 2023

1/

(x + 1) + (x + 3) + (x + 5) + ... + (x + 999) = 500

<=> (x + x + x + ... + x) + (1 + 3 + 5 + ... + 999) = 500

Xét tổng A = 1 + 3 + 5 + ... + 999

Số số hạng của A là: (999 - 1) : 2 + 1 = 500 

Tổng A là: (999 + 1) x 500 : 2 = 250 000

Do A có 500 số hạng nên có 500 ẩn x.

Vậy ta có: 500x + 250 000 = 500

=> 500x = -249 500

=> x = 499

Vậy x = 499

14 tháng 10 2023

a)

\(175\cdot19+38\cdot175+43\cdot175\\ =175\cdot19+175\cdot38+175\cdot43\\ =175\cdot\left(19+38+43\right)\\ =175\cdot100\\ =17500\)

b)

\(125\cdot75+125\cdot13-80\cdot125\\ =125\cdot75+125\cdot13-125\cdot80\\ =125\cdot\left(75+13-80\right)\\ =125\cdot10\\ =125\cdot8\\ =1000\)

14 tháng 10 2023

a, 175. 19 + 38. 175 + 43. 175

= 175. 19 + 175. 38 + 175. 43

= 175.(19 + 38 + 43)

= 175. 100

= 17500 

bài 3:

a: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=5\left(1+5+5^2+\cdots+5^{19}\right)\) ⋮5

b: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{19}+5^{20}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdots+5^{19}\left(1+5\right)\)

\(=6\left(5+5^3+\cdots+5^{19}\right)\) ⋮6

c: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+\cdots+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\)

\(=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+\cdots+5^{17}\left(1+5+5^2+5^3\right)\)

\(=\left(1+5+5^2+5^3\right)\left(5+5^5+\cdots+5^{17}\right)=156\cdot\left(5+5^5+\cdots+5^{17}\right)\)

\(=13\cdot12\cdot\left(5+5^5+\cdots+5^{17}\right)\) ⋮13

Bài 2:

a: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=3\left(1+3+3^2+3^3+\cdots+3^{119}\right)\) ⋮3

b: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\cdots+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+\cdots+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+\cdots+3^{119}\right)\) ⋮4

c: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+\cdots+3^{118}\right)\) ⋮13

Bài 1:

a: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=2\left(1+2+2^2+\cdots+2^{19}\right)\) ⋮2

b: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\cdots+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+\cdots+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+\cdots+2^{19}\right)\) ⋮3

c: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\cdots+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+\cdots+2^{17}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+\ldots+2^{17}\right)=5\cdot3\cdot\left(2+2^5+\cdots+2^{17}\right)\) ⋮5

23 tháng 8

Bài 1:

a; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

A = 2 x (1+ 2+ 2\(^2\) + ... + 2\(^{19}\))

A ⋮ 2(đpcm)

b; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2;...; 20 đây là dãy số cách đều với khoảng cách là:

2 - 1 = 1

Số số hạng của dãy số trên là:

(20 - 1) : 1+ 1 = 20(số)

Vì 20 : 2 = 10

Vậy nhóm hai số hạng liên tiếp của A vào nhau khi đó ta có:

A = (2+ 2\(^2\)) + (2\(^3\) + 2\(^4\)) + ... + (2\(^{19}+\) 2\(^{20}\))

A = 2.(1 + 2) + 2\(^3\).(1+ 2) + ... + 2\(^{19}\) .(1 + 2)

A = 2.3 + 2\(^3\).3 + ... + 2\(^{19}\).3

A = 3.(2+ 2\(^3\) + ... + 2\(^{19}\))

A ⋮ 3 (đpcm)

c; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2; 3;...; 20

Dãy số trên có 20 số hạng:

Vì 20 : 4 = 5

Vậy nhóm 4 hạng tử của A thành một nhóm khi đó:

A = (2+ 2\(^2\) + 2\(^3\) + 2\(^4\)) + ... + (2\(^{17}+2^{18}+2^{19}+2^{20}\))

A = 2.(1 + 2 + 2\(^2\) + 2\(^3\)) + ... + 2\(^{17}\).(1 + 2 + 2\(^2\) + 2\(^3\))

A = (1+ 2 +2\(^2\) + 2\(^3\)).(2+ ...+ 2\(^{17}\))

A = (1 + 2 + 4 + 8).(2+ ...+ 2\(^{17}\))

A = (3+ 4 + 8).(2+ ...+ 2\(^{17}\))

A = (7 + 8)(2+ ...+ 2\(^{17}\))

A = 15.(2+ ...+ 2\(^{17}\))

A ⋮ 5(đpcm)


24 tháng 1 2024

\(\dfrac{15}{34}+\dfrac{1}{3}+\dfrac{19}{34}-\dfrac{4}{3}+\dfrac{3}{7}=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{3}{7}=1-1+\dfrac{3}{7}=\dfrac{3}{7}\)

Ta có: \(10A=\frac{10^{21}-60}{10^{21}-6}=\frac{10^{21}-6-54}{10^{21}-6}=1-\frac{54}{10^{21}-6}\)

\(10B=\frac{10^{22}-60}{10^{22}-6}=\frac{10^{22}-6-54}{10^{22}-6}=1-\frac{54}{10^{22}-6}\)

Ta có: \(10^{21}-6<10^{22}-6\)

=>\(\frac{54}{10^{21}-6}>\frac{54}{10^{22}-6}\)

=>\(-\frac{54}{10^{21}-6}<-\frac{54}{10^{22}-6}\)

=>\(-\frac{54}{10^{21}-6}+1<-\frac{54}{10^{22}-6}+1\)

=>10A<10B

=>A<B

Ta có: \(\frac{A}{10^{10}}=\frac{10^{20}-6}{10^{20}-6\cdot10^{10}}=\frac{10^{20}-6\cdot10^{10}+6\left(10^{10}-1\right)}{10^{20}-6\cdot10^{10}}=1+\frac{6\left(10^{10}-1\right)}{10^{20}-6\cdot10^{10}}\)

\(\frac{B}{10^{10}}=\frac{10^{21}-6}{10^{21}-6\cdot10^{10}}=\frac{10^{21}-6\cdot10^{10}+6\left(10^{10}-1\right)}{10^{21}-6\cdot10^{10}}=1+\frac{6\left(10^{10}-1\right)}{10^{21}-6\cdot10^{10}}\)

Ta có: \(10^{20}<10^{21}\)

=>\(10^{20}-6\cdot10^{10}<10^{21}-6\cdot10^{10}\)

=>\(\frac{6\left(10^{10}-1\right)}{10^{20}-6\cdot10^{10}}>\frac{6\left(10^{10}-1\right)}{10^{21}-6\cdot10^{10}}\)

=>\(\frac{6\left(10^{10}-1\right)}{10^{20}-6\cdot10^{10}}+1>\frac{6\left(10^{10}-1\right)}{10^{21}-6\cdot10^{10}}+1\)

=>\(\frac{A}{10^{10}}>\frac{B}{10^{10}}\)

=>A>B

22 tháng 1 2024

Bài 5:

                 30 phút  = \(\dfrac{1}{2}\) giờ 

Thời gian gia đình bạn Tuấn đi từ Hà Nội tới Phan Thiết tới là:

              \(\dfrac{13}{4}\) + \(\dfrac{1}{2}\) + \(\dfrac{13}{3}\) = \(\dfrac{97}{12}\) giờ

               \(\dfrac{95}{12}\) giờ = 8 giờ 5 phút 

b; Gia đình bạn Tuấn đến thành Phố Phan Thiết lúc:

              6 giờ + 8 giờ 5 phút = 14 giờ 5 phút 

Kl...

    

22 tháng 1 2024

Bài 6:

a; -3 - \(\dfrac{2}{5}\) ≤ \(x\) ≤  \(\dfrac{1}{2}\) - \(\dfrac{-3}{4}\)

   - \(\dfrac{17}{5}\)  ≤ \(x\) ≤ \(\dfrac{5}{4}\)

   -3,4  ≤ \(x\) ≤ 1,25

   Vì \(x\) là số nguyên nên \(x\) \(\in\) {-3; -2; -1; 0; 1}

   

    

29 tháng 1 2024

Chiều rộng của mảnh vườn hình chữ nhật là:

            \(\dfrac{21}{4}\) : \(\dfrac{7}{3}\) = \(\dfrac{9}{4}\) (m)

Chu vi của mảnh vườn hìn chữ nhật là:

          (\(\dfrac{21}{4}\) + \(\dfrac{9}{4}\)) x 2 = 15 (m)

Diện tích của mảnh vườn hình chữ nhật là:

            \(\dfrac{21}{4}\) x \(\dfrac{9}{4}\) = \(\dfrac{189}{16}\) (m2)

b; Số tiền thu được khi trồng hoa để bán trên mảnh đất hình chữ nhật đó là:

             80 000 x \(\dfrac{189}{16}\) = 945 000 (đồng)

KL...

             

 

 

29 tháng 1 2024

Bài 5:

a, Chiều rộng mảnh vườn:

\(\dfrac{21}{4}:\dfrac{7}{3}=\dfrac{9}{4}\left(m\right)\)

Chu vi mảnh đất:

\(2\times\left(\dfrac{21}{4}+\dfrac{9}{4}\right)=15\left(m\right)\)

Diện tích mảnh đất:

\(\dfrac{21}{4}\times\dfrac{9}{4}=\dfrac{189}{16}\left(m^2\right)\)

b, Số tiền thu được khi bán hoa:

\(\dfrac{189}{16}\times80000=945000\left(đồng\right)\)