K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

23 tháng 7 2019
Vì BI và CI là phân giác ABC và ACB
=> ABI = IBC
=> ACI = ICB
=> BIC = 180° - ( IBC + ICB )
Mà ABC + ACB = 180° - A
=> IBC + ICB = \(\frac{180°-\alpha}{2}\)
=> BIC = 180° - \(\frac{180°-\alpha}{2}\)
a: Xét ΔABC có \(\hat{ABC}+\hat{ACB}+\hat{BAC}=180^0\)
=>\(\hat{ABC}+\hat{ACB}=180^0-\hat{BAC}\)
=>\(2\left(\hat{IBC}+\hat{ICB}\right)=180^0-\hat{BAC}\)
=>\(\hat{IBC}+\hat{ICB}=90^0-\frac12\cdot\hat{BAC}\)
Xét ΔBIC có \(\hat{BIC}+\hat{IBC}+\hat{ICB}=180^0\)
=>\(\hat{BIC}=180^0-\left(90^0-\frac12\cdot\hat{BAC}\right)=90^0+\frac12\cdot\hat{BAC}\)
Vì BI và BK lần lượt là phân giác trong và phân giác ngoài tại đỉnh B
nên BI⊥BK
Vì CI và CK lần lượt là phân giác trong và phân giác ngoài tại đỉnh C
nên CI⊥CK
Xét tứ giác IBKC có \(\hat{IBK}+\hat{ICK}+\hat{BIC}+\hat{BKC}=360^0\)
=>\(\hat{BIC}+\hat{BKC}=360^0-90^0-90^0=180^0\)
=>\(\hat{BKC}=180^0-\hat{BIC}=180^0-\left(90^0+\frac12\cdot\hat{BAC}\right)=90^0-\frac12\cdot\hat{BAC}\)
b: ΔBKD vuông tại K
=>\(\hat{KDB}+\hat{DKB}=90^0\)
=>\(\hat{KDB}=90^0-\left(90^0-\frac12\cdot\hat{BAC}\right)=\frac12\cdot\hat{BAC}\)