K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

a) Đúng

Gọi O là trung điểm của AB.

Ta có CO là trung tuyến ứng với cạnh huyền nên

⇒ OC = AB/2 = OA = OB.

⇒ A, B, C cùng thuộc đường tròn bán kính OA.

Tâm O là trung điểm của AB nên AB là đường kính.

Vậy C thuộc đường tròn đường kính AB.

b) Đúng

Gọi O là tâm đường tròn.

⇒ OA = OB = OC = R

AB là đường kính nên AB = 2R.

Tam giác ABC có CO là trung tuyến và CO = AB/2

⇒ ΔABC vuông tại C.

21 tháng 4 2017

Bài giải:

a) Đúng.

Gọi O là trung điểm của AB. Ta có CO là trung tuyến ứng với cạnh huyền nên

OC = 1212AB hay OC = OA = OB. Nên A, B, C cùng thuộc đường tròn bán kình OA. Vậy C thuộc đường tròn đường kính AB.

b) Đúng.

Gọi O là tâm đường tròn. Tam giác ABC có trung tuyến CO bằng nửa cạnh AB (do CO = AO = OB) nên tam giác ABC vuông tại C.

13 tháng 10 2017

a) Đúng.

Gọi O là trung điểm của AB. Ta có CO là trung tuyến ứng với cạnh huyền nên

OC = \(\dfrac{1}{2}\)AB hay OC = OA = OB. Nên A, B, C cùng thuộc đường tròn bán kình OA. Vậy C thuộc đường tròn đường kính AB.

b) Đúng.

Gọi O là tâm đường tròn. Tam giác ABC có trung tuyến CO bằng nửa cạnh AB (do CO = AO = OB) nên tam giác ABC vuông tại C.

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900;K^=I^=900;ˆAA^ chung) (3)

⇒ ˆACI=ˆABKACI^=ABK^

⇒ 900−ˆACI=900−ˆABK900−ACI^=900−ABK^

⇒ ˆHCD=ˆHBDHCD^=HBD^ (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆAKHI^=3600−A^−HKA−^HIA^=1800−A^

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆDKHI^=D^ (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AIAK=ACABAIAK=ACAB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi

nó bị lỗi mk gửi lại 

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900,ˆAA^ chung) (3)

⇒ ˆACI=ˆABK

⇒ 900−ˆACI=900−ˆABK

⇒ ˆHCD=ˆHBD (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆA

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆD (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AI/AK=AC/AB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi

QT
Quoc Tran Anh Le
Giáo viên
30 tháng 8