K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bằng nhau nên là hình bình hành theo dấu hiệu nhận biết 5

b) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa)

c) Sai.

Ví dụ tứ giác ABCD ở dưới có AB = CD nhưng không phải hình bình hành.

Giải bài tập Vật lý lớp 10

d) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.

Giải bài tập Vật lý lớp 10

21 tháng 4 2017

a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bàng nhau nên là hình bình hành theo dấu hiệu nhận biết 5.

b) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa).

c) Sai, vì hình thang cân có hai cạnh đối (hai cạnh bên) bằng nhau nhưng nó không phải là hình bình hành.

d) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.

2 tháng 7 2018

Bài giải:

a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bàng nhau nên là hình bình hành theo dấu hiệu nhận biết 5.

b) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa).

c) Sai, vì hình thang cân có hai cạnh đối (hai cạnh bên) bằng nhau nhưng nó không phải là hình bình hành.

d) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.

23 tháng 8 2019

Câu

Khẳng định

Đúng

Sai

1

Hình thang là tứ giác có các cạnh đối song song

 x

 

2

Hình thang có hai cạnh bên bằng nhau là hình thang cân

 

 x

3

Hình bình hành là tứ giác có hai đường chéo bằng nhau

 

 x

4

Hình thang có hai cạnh bên song song là hình bình hành

 x

 

17 tháng 11 2021

C. Hình bình hành là tứ giác có các cạnh đối song song.

17 tháng 11 2021

17 tháng 11 2021

C bạn nhé

Câu 38.  Khẳng định nào sau đây là đúng ?  A. Hình thang có 2 cạnh bên bằng nhau là hình thang cân.  B. Tứ giác có hai cạnh song song là hình bình hành.  C. Hình bình hành có 2 đường chéo bằng nhau là hình chữ nhật.  D. Hình thang có 1 góc vuông là hình chữ nhật.Câu 39. Cho hình 1, biết rằng AB // CD // EF // GH. Số đo x, y trong hình 1 là:A. x = 4 cm, y = 8...
Đọc tiếp

Câu 38.  Khẳng định nào sau đây là đúng ?

  A. Hình thang có 2 cạnh bên bằng nhau là hình thang cân.

  B. Tứ giác có hai cạnh song song là hình bình hành.

  C. Hình bình hành có 2 đường chéo bằng nhau là hình chữ nhật.

  D. Hình thang có 1 góc vuông là hình chữ nhật.

Câu 39. Cho hình 1, biết rằng AB // CD // EF // GH. Số đo x, y trong hình 1 là:

A. x = 4 cm, y = 8 cm                                                 B.  x = 7cm, y = 14 cm              

C. x = 12 cm, y = 20 cm                                            D. x = 8 cm, y = 10 cm

Câu 40: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q theo thứ tự là trung điểm của AD, AF, EF, ED. ΔABC có điều kiện gì thì MNPQ là hình chữ nhật?

A.Tam giác ABC cân tại A

B. Tam giác ABC cân tại B

C.Tam giác ABC cân tại C

D. Tam giác ABC vuông tại A.

1
23 tháng 11 2021

38C

39C

40D

28 tháng 10 2021

C

28 tháng 10 2021

Nhầm là A

22 tháng 11 2021

D

17 giờ trước (16:12)

a:

Xét tứ giác ABCD có

AB//CD
AD//BC

Do đó: ABCD là hình bình hành

b:

Xét ΔABD và ΔCDB có

AB=CD

\(\hat{ABD}=\hat{CDB}\) (hai góc so le trong, AB//CD)

BD chung

Do đó: ΔABD=ΔCDB

=>\(\hat{ADB}=\hat{CBD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

Xét tứ giác ABCD có

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

18 giờ trước (15:37)

Định lý 2 (phát biểu)

a) Nếu tứ giác có hai cặp cạnh đối bằng nhau (theo độ dài) thì tứ giác đó là hình bình hành.
b) Nếu tứ giác có **một cặp cạnh đối vừa song song vừa bằng nhau thì tứ giác đó là hình bình hành.


Ký hiệu chung cho cả hai phần

Gọi tứ giác \(A B C D\) theo thứ tự (cạnh \(A B , B C , C D , D A\)).
Gọi \(A C\) là một đường chéo.

Cách vẽ hình minh họa (vẽ tay):

  1. Vẽ tứ giác bất kì \(A B C D\) (không bắt buộc là hình bình hành).
  2. Vẽ đường chéo \(A C\).
  3. Đánh dấu các cạnh bằng nhau hoặc song song theo đề bài (dấu “=” cho bằng, mũi tên song song cho song song).
  4. Ta sẽ dùng hai tam giác \(\triangle A B C\)\(\triangle C D A\) để so sánh.

Phần (a) — Chứng minh:

Giả thiết: \(A B = C D\)\(B C = A D\).
Phải chứng minh: \(A B \parallel C D\)\(B C \parallel A D\) (tức là \(A B C D\) là hình bình hành).

Chứng minh:

  1. Xét hai tam giác \(\triangle A B C\)\(\triangle C D A\).
    • \(A B = C D\) (giả thiết).
    • \(B C = A D\) (giả thiết).
    • \(A C\) là cạnh chung.
      Vậy theo tiêu chí SSS (ba cạnh bằng nhau), ta có \(\triangle A B C \cong \triangle C D A\).
  2. Từ đồng dư hai tam giác, các góc tương ứng bằng nhau. Cụ thể:
    • \(\angle B A C = \angle D C A\).
    • \(\angle B C A = \angle D A C\).
  3. Quan sát: \(\angle B A C\) là góc giữa đường thẳng \(B A\)\(A C\); \(\angle D C A\) là góc giữa đường thẳng \(D C\)\(C A\). Vì hai góc ấy bằng nhau và cùng liên quan đến đường thẳng \(A C\), suy ra đường thẳng \(B A\) song song với đường thẳng \(D C\), tức \(A B \parallel C D\).
    Tương tự, từ \(\angle B C A = \angle D A C\) suy ra \(B C \parallel A D\).
  4. Vậy hai cặp cạnh đối của \(A B C D\) song song nhau nên \(A B C D\)hình bình hành. □

Phần (b) — Chứng minh:

Giả thiết: Một cặp cạnh đối (ví dụ \(A B\)\(C D\)) song songbằng nhau (tức \(A B \parallel C D\)\(A B = C D\)).
Phải chứng minh: \(A B C D\) là hình bình hành (tức còn cặp cạnh kia cũng song song).

Chứng minh:

  1. Xét hai tam giác \(\triangle A B C\)\(\triangle C D A\) như trên.
    • \(A B = C D\) (giả thiết).
    • \(A C\) là cạnh chung.
    • \(A B \parallel C D\), nên góc giữa \(B A\)\(A C\) bằng góc giữa \(D C\)\(C A\). Tức \(\angle B A C = \angle D C A\).
  2. Ta có trong hai tam giác \(\triangle A B C\)\(\triangle C D A\):
    • Một cạnh bằng (\(A B = C D\)),
    • Một cạnh chung (\(A C\)),
    • Góc giữa hai cạnh này bằng (\(\angle B A C = \angle D C A\)).
      Do đó theo tiêu chí SAS (cạnh-góc-cạnh), \(\triangle A B C \cong \triangle C D A\).
  3. Từ đồng dư suy ra \(B C = A D\) (các cạnh tương ứng bằng nhau) và đồng thời các góc tương ứng bằng nhau. Do đó \(\angle B C A = \angle D A C\), suy ra \(B C \parallel A D\).
  4. \(A B \parallel C D\) đã có và giờ \(B C \parallel A D\) vừa chứng minh, nên \(A B C D\)hình bình hành. □

Ghi chú/trực quan hóa

  • Cả hai chứng minh đều dùng đồng dư tam giác (SSS hoặc SAS) qua đường chéo \(A C\).
  • Kết luận: chứng minh ra hai cạnh tương ứng song song → định nghĩa hình bình hành được thỏa mãn.
  • Khi vẽ hãy:
    • Vẽ \(A B C D\) và đường chéo \(A C\).
    • Đánh dấu các cạnh bằng nhau (dấu “=”) hoặc mũi tên song song (nếu có song song).
    • Chú thích tam giác \(\triangle A B C\)\(\triangle C D A\) để thấy rõ các cạnh tương ứng.
10 tháng 11 2021

Hình thang có hai góc kề một cạnh đáy bằng nhau là hình bình hành.