
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a cần chứng minh rằng \(M = 125^{7} - 625^{2} - 25^{9}\) chia hết cho 99.
Bước 1: Tách 99 thành thừa số nguyên tố
Ta có \(99 = 3 \times 33\), và 33 lại có thể phân tích thành \(33 = 3 \times 11\). Vậy \(99 = 3^{2} \times 11\). Để chứng minh \(M\) chia hết cho 99, ta sẽ chứng minh \(M\) chia hết cho cả 9 và 11.
Bước 2: Chứng minh \(M\) chia hết cho 9
Ta xét \(M m o d \textrm{ } \textrm{ } 9\):
- \(125 \equiv 8 m o d \textrm{ } \textrm{ } 9\)
- \(625 \equiv 4 m o d \textrm{ } \textrm{ } 9\)
- \(25 \equiv 7 m o d \textrm{ } \textrm{ } 9\)
Vậy ta cần tính:
\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 9 = \left(\right. 8^{7} - 4^{2} - 7^{9} \left.\right) m o d \textrm{ } \textrm{ } 9\)
- \(8^{7} m o d \textrm{ } \textrm{ } 9\): Vì \(8 \equiv - 1 m o d \textrm{ } \textrm{ } 9\), ta có \(8^{7} \equiv \left(\right. - 1 \left.\right)^{7} \equiv - 1 m o d \textrm{ } \textrm{ } 9\).
- \(4^{2} m o d \textrm{ } \textrm{ } 9 = 16 m o d \textrm{ } \textrm{ } 9 = 7 m o d \textrm{ } \textrm{ } 9\).
- \(7^{9} m o d \textrm{ } \textrm{ } 9\): Vì \(7^{3} \equiv 1 m o d \textrm{ } \textrm{ } 9\), ta có \(7^{9} \equiv 1^{3} = 1 m o d \textrm{ } \textrm{ } 9\).
Vậy:
\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. - 1 - 7 - 1 \left.\right) m o d \textrm{ } \textrm{ } 9 = - 9 m o d \textrm{ } \textrm{ } 9 = 0\)
Do đó, \(M\) chia hết cho 9.
Bước 3: Chứng minh \(M\) chia hết cho 11
Ta xét \(M m o d \textrm{ } \textrm{ } 11\):
- \(125 \equiv 4 m o d \textrm{ } \textrm{ } 11\)
- \(625 \equiv 9 m o d \textrm{ } \textrm{ } 11\)
- \(25 \equiv 3 m o d \textrm{ } \textrm{ } 11\)
Vậy ta cần tính:
\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 11 = \left(\right. 4^{7} - 9^{2} - 3^{9} \left.\right) m o d \textrm{ } \textrm{ } 11\)
- \(4^{7} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 4 mod 11:
\(4^{1} \equiv 4 m o d \textrm{ } \textrm{ } 11 , 4^{2} \equiv 16 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 4^{3} \equiv 20 \equiv 9 m o d \textrm{ } \textrm{ } 11 , 4^{4} \equiv 36 \equiv 3 m o d \textrm{ } \textrm{ } 11 , 4^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
Vậy \(4^{7} = 4^{5} \times 4^{2} \equiv 1 \times 5 = 5 m o d \textrm{ } \textrm{ } 11\). - \(9^{2} m o d \textrm{ } \textrm{ } 11 = 81 m o d \textrm{ } \textrm{ } 11 = 4 m o d \textrm{ } \textrm{ } 11\).
- \(3^{9} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 3 mod 11:
\(3^{1} \equiv 3 m o d \textrm{ } \textrm{ } 11 , 3^{2} \equiv 9 m o d \textrm{ } \textrm{ } 11 , 3^{3} \equiv 27 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 3^{4} \equiv 15 \equiv 4 m o d \textrm{ } \textrm{ } 11 , 3^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
Vậy \(3^{9} = 3^{5} \times 3^{4} \equiv 1 \times 4 = 4 m o d \textrm{ } \textrm{ } 11\).
Vậy:
\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 5 - 4 - 4 \left.\right) m o d \textrm{ } \textrm{ } 11 = - 3 m o d \textrm{ } \textrm{ } 11 = 8\)
Do đó, \(M ≢ 0 m o d \textrm{ } \textrm{ } 11\), tức là \(M\) không chia hết cho 11.
Kết luận:
Dựa trên phép tính trên, ta thấy rằng \(M\) chia hết cho 9 nhưng không chia hết cho 11, vì vậy \(M\) không chia hết cho 99.

25²⁵ + 5⁴⁹ - 125¹⁶
= (5²)²⁵ + 5⁴⁹ - (5³)¹⁶
= 5⁵⁰ + 5⁴⁹ - 5⁴⁸
= 5⁴⁸.(5² + 5 - 1)
= 5⁴⁸.24


a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)
b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)
Vậy ........

1) \(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2=\left(\frac{-3}{5}\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=\frac{-3}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=\frac{-4}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{-2}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\y=\frac{-2}{5}\end{array}\right.\)
2) Ta có:
29 + 299
= 29.(1 + 290)
= 512.(1 + 280.210)
= 512.[1 + (220)4.1024]
= 512.[1 + (...26)4.2014)]
= 512.[1 + (...26).1024]
= 512.[1 + (...24)]
= 512.(...25)
= 128.4.(...25)
= 128.(...00)
= (...00) \(⋮100\)
Chứng tỏ \(2^9+2^{99}⋮100\)
Bài 1:
\(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow2x+\frac{1}{5}=\pm\frac{3}{5}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=-\frac{4}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=-\frac{2}{5}\end{array}\right.\)
Vậy ........