Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nhanh hộ mik vs.mai miik phải nộp bài r.giúp mik đi

Áp dụng tính chất dãy tỉ số bằng nhau ta có : a-b/x = b-c/y = a-c/z = a-b+b-c+c-a/x+y+z = 0
=> a-b=0 ; b-c=0 ; c-a=0
=> a=b=c
Tk mk nha

Ta cần tìm tất cả các cặp số hữu tỉ \(\left(\right. x , y \left.\right)\) sao cho:
- \(x + y \in \mathbb{Z}\)
- \(\frac{1}{x} + \frac{1}{y} \in \mathbb{Z}\)
🔍 Bước 1: Gọi \(x , y \in \mathbb{Q}\) (số hữu tỉ), đặt:
- \(x + y = a \in \mathbb{Z}\)
- \(\frac{1}{x} + \frac{1}{y} = \frac{x + y}{x y} = \frac{a}{x y} = b \in \mathbb{Z}\)
Từ đó:
\(\frac{a}{x y} = b \Rightarrow x y = \frac{a}{b}\)
Vậy ta có hệ:
\(\left{\right. x + y = a \in \mathbb{Z} \\ x y = \frac{a}{b} \in \mathbb{Q}\)
🔍 Bước 2: Giải hệ bằng định lý Vi-ét đảo
Từ tổng và tích \(x + y = a\), \(x y = \frac{a}{b}\), ta xem \(x , y\) là nghiệm của phương trình bậc 2:
\(t^{2} - a t + \frac{a}{b} = 0\)
Phương trình này có nghiệm hữu tỉ khi:
- Hệ số \(a \in \mathbb{Z}\), \(\frac{a}{b} \in \mathbb{Q}\)
- Điều kiện cần là phân biệt và hữu tỉ, tức là:
\(\Delta = a^{2} - 4 \cdot \frac{a}{b} = a^{2} - \frac{4 a}{b} \in \mathbb{Q}\)
→ Ta muốn nghiệm là hữu tỉ, nên căn thức phải là số hữu tỉ, tức:
\(a^{2} - \frac{4 a}{b} \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{b} \overset{ˋ}{\imath} \text{nh}\&\text{nbsp};\text{ph}ưo\text{ng}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp};\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{h}ữ\text{u}\&\text{nbsp};\text{t}ỉ\)
Để đơn giản, ta chọn các giá trị nhỏ để tìm cặp cụ thể.
🔍 Bước 3: Thử giá trị cụ thể
Ví dụ: chọn \(a = 2\), \(b = 1\)
→ \(x + y = 2\), \(x y = \frac{2}{1} = 2\)
Giải phương trình:
\(t^{2} - 2 t + 2 = 0 \Rightarrow \Delta = 4 - 8 = - 4 \Rightarrow \text{v} \hat{\text{o}} \&\text{nbsp};\text{nghi}ệ\text{m}\&\text{nbsp};(\text{kh} \hat{\text{o}} \text{ng}\&\text{nbsp};\text{ph}ả\text{i}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{h}ữ\text{u}\&\text{nbsp};\text{t}ỉ)\)
Thử \(a = 2\), \(b = 2 \Rightarrow x y = 1\)
Phương trình: \(t^{2} - 2 t + 1 = 0 \Rightarrow \left(\right. t - 1 \left.\right)^{2} = 0 \Rightarrow x = y = 1\)
✅ Thỏa mãn:
- \(x + y = 2 \in \mathbb{Z}\)
- \(\frac{1}{x} + \frac{1}{y} = 1 + 1 = 2 \in \mathbb{Z}\)
Vậy \(\left(\right. 1 , 1 \left.\right)\) là 1 cặp nghiệm.
✅ Kết luận tổng quát:
Với \(x , y \in \mathbb{Q}\), thỏa mãn:
\(x + y = a \in \mathbb{Z} , x y = \frac{a}{b} \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; b \in \mathbb{Z}\)
Thì \(x , y\) là nghiệm của phương trình:
\(t^{2} - a t + \frac{a}{b} = 0\)
Muốn \(x , y \in \mathbb{Q}\) thì phương trình trên phải có nghiệm hữu tỉ. Do đó:
✅ Tập hợp nghiệm là các cặp số hữu tỉ \(\left(\right. x , y \left.\right)\) sao cho:
- \(x + y \in \mathbb{Z}\)
- \(x y \in \mathbb{Q}\)
- Và \(x , y\) là nghiệm hữu tỉ của phương trình \(t^{2} - \left(\right. x + y \left.\right) t + x y = 0\)

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4

bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt

Lời giải :
Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)
Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)
Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)
\(\Leftrightarrow3x-2z=-56\)
\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)
\(\Leftrightarrow k=\frac{-560}{51}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)
\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)