K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2015

c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng

=>OH/OK=OF/OA

=>OK.OF= OH.OA=OB^2=OD^2

=>OK/OD=OD/OF

=> Tam giác ODK và Tam giác OFD đồng dạng

=>Tam giác ODF vuông tại D

=>FD la tiếp tuyến của (O) (đpcm)

d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)

=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED

mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90

=> F,E,I thẳng hàng

Ta có BINF là hình bình hành nên  FN=BI=IA => IANF la hbh 

=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)

 

2 tháng 12 2015

Bạn tự vẽ hình nhé! 

+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)

- Nối O với F. Kẻ OH | BF. 

Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2

Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)

=> góc ABF = góc BOF/2   (*)

- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2

Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc  FOC/ 2

=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2 

=> góc BDF = góc BOF/2 (**)

Từ (*)(**) => góc ABF = BDF mà góc FAB chung 

=>  Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2

+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung 

=> Tam giác AFI đồng dạng với tam giác AOD  (c - g- c)

=> góc AIF = ADO ( 2 góc tương ứng) 

 

16 tháng 12 2015

kho nhi?????????????????????????????

9 tháng 11 2019
https://i.imgur.com/LuwOJwZ.jpg
9 tháng 11 2019

Nguyễn Ngọc LinhNguyễn Thị Diễm QuỳnhAki TsukiIchigoLê Ngọc KhôiPhạm Lan HươngtthVũ Minh TuấnMinh AnBăng Băng 2k6Lê Thị Thục HiềnNguyễn Lê Phước ThịnhNo choice teenHISINOMA KINIMADOAkai HarumaNguyễn Huy ThắngNguyễn Thanh HằngHồng Phúc NguyễnPhương AnMysterious Person

a: Xét tứ giác OBAC có \(\hat{OBA}+\hat{OCA}=90^0+90^0=180^0\)

nên OBAC là tứ giác nội tiếp đường tròn đường kính OA

=>O,B,A,C cùng thuộc đường tròn đường kính OA

ta có: OI+IA=OA

=>IA=OA-OI=2R-R=R

=>OI=IA

=>I là trung điểm của OA

=>Tâm của đường tròn chứa bốn điểm O,A,B,C là I

b:

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

ta có; OK⊥OB

OB⊥BA

Do đó: OK//BA

=>\(\hat{KOA}=\hat{BAO}\) (hai góc so le trong)

\(\hat{BAO}=\hat{KAO}\) (AO là phân giác của góc BAC)

nên \(\hat{KOA}=\hat{KAO}\)

=>ΔKOA cân tại K

c: ΔKOA cân tại K

mà KI là đường trung tuyến

nên KI⊥OA tại I

=>KI⊥OI tại I

=>KI là tiếp tuyến của (O)