Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn chỉ cần lam cho trong căn xuất hiện hằng đẵng thức là được
VD:\(\sqrt{2+2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}+1\right)\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a, \(=\sqrt{\left(2\sqrt{2}\right)^2+2\times2\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)

Trả lời
\(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
Đặt \(M=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)
\(M^2=\left(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\right)^2\)
\(M^2=\frac{\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)^2}{\left(\sqrt{\sqrt{5}+1}\right)^2}\)
\(M^2=\frac{\sqrt{5}+2+2\sqrt{\left(\sqrt{5}+2\right).\left(\sqrt{5}-2\right)}+\sqrt{5}-2}{\sqrt{5}+1}\)
\(M^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}\)
\(M^2=\frac{2\sqrt{5}+2}{\sqrt{5}+1}\)
\(M^2=\frac{2.\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\)
\(M^2=2\)
\(M=\sqrt{2}\)
THay M vào B ta có \(B=M-\sqrt{3-2\sqrt{2}}\)
\(B=\sqrt{2}-\sqrt{3-2\sqrt{2}}\)
\(B=\sqrt{2}-\sqrt{2-2\sqrt{2}+1}\)
\(B=\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(B=\sqrt{2}-\sqrt{2}+1\)
\(B=1\)

- \(5-2\sqrt{6}=3-2\sqrt{2}\cdot\sqrt{3}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\Rightarrow\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)
- Tương tự \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
- Tử số: \(TS=\left(\sqrt{3}+\sqrt{2}\right)^2\left(49-20\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)=\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)=\)
\(=49\sqrt{3}+49\sqrt{2}-20\cdot3\sqrt{2}-20\cdot2\sqrt{3}=9\sqrt{3}-11\sqrt{2}\)
- Vậy C = 1.

\(\left(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}\right)^2\)
\(=\sqrt[3]{4}+2\sqrt[3]{50}+5\sqrt[3]{5}+2\left(2\sqrt[3]{5}-\sqrt[3]{50}-5\sqrt[3]{4}\right)\)
\(=9\sqrt[3]{5}-9\sqrt[3]{4}=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\)
\(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)

x+√(x^2+3)=3/(y+√(y^3))=3(y-√(y^2+3)/-a(trục căn thức)
x+√(x^2+3)=-y+√(y^2+3) suy ra x+y=√(y^2+3)-√(x^2+3)(1)
Tương tự,x+y=√(x^2+3)-√(y^2+3)(2)
Cộng (1),(2) theo vế suy ra 2(x+y)=0 suy ra x+y=0
hay E=0.
Vậy E=0
nhân \(-x+\sqrt{x^2+3}\) vào 2 vế ta đc : \(\left(-x^2+x^2+3\right)\left(y+\sqrt{y^2+3}\right)=\)\(3\left(-x+\sqrt{x^2+3}\right)\)
<=> \(y+\sqrt{y^2+3}=-x+\sqrt{x^2+3}\)<=> \(y+\sqrt{y^2+3}+x-\sqrt{x^2+3}=0\)__(1)___
làm tương tự ta đc \(\left(-y+\sqrt{y^2+3}\right)\left(x+\sqrt{x^2+3}\right)\)\(=3\left(-y+\sqrt{y^2+3}\right)\)
<=> \(x+\sqrt{x^2+3}=-y+\sqrt{y^2+3}\)<=> \(x+\sqrt{x^2+3}+y-\sqrt{y^2+3}=0\)__(2)__
lấy (1) + (2) => 2(x+y) =0 => x+y=0
lấy

1) Cách 1 :
\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)
\(M=\sqrt{9-6\sqrt{2}+2}+\sqrt{9+6\sqrt{2}+2}\)
\(M=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}\)
\(M=\left|3-\sqrt{2}\right|+\left|3+\sqrt{2}\right|\)
\(M=3-\sqrt{2}+3+\sqrt{2}=6\)
Cách 2 :
\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)
\(\Rightarrow M^2=11-6\sqrt{2}+2\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}+11+6\sqrt{2}\)
\(\Leftrightarrow M^2=22+2.7=36\)
\(\Leftrightarrow M=6\left(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}>0\right)\)
2)
\(A=53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{8-4\sqrt{2}+1}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\left|2\sqrt{2}-1\right|}\)
\(\Leftrightarrow A=53-20\sqrt{4+2\sqrt{2}-1}\)
\(\Leftrightarrow A=53-20\sqrt{3+2\sqrt{2}}\)
\(\Leftrightarrow A=53-20\sqrt{2+2\sqrt{2}+1}\)
\(\Leftrightarrow A=53-20\left(\sqrt{2}+1\right)\)
\(\Leftrightarrow A=53-20\sqrt{2}-20=33-20\sqrt{2}\)
3)
\(M=\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(M=\sqrt{3-\sqrt{5}}.\left(3\sqrt{10}-3\sqrt{2}+5\sqrt{2}-\sqrt{10}\right)\)
\(M=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(M=2\sqrt{2}.\sqrt{3-\sqrt{5}}\left(\sqrt{5}+1\right)\)
\(\Rightarrow M^2=8.\left(3-\sqrt{5}\right).\left(5+2\sqrt{5}+1\right)\)
\(\Leftrightarrow M^2=\left(24-8\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)
\(\Leftrightarrow M^2=144+48\sqrt{5}-48\sqrt{5}-80\)
\(\Leftrightarrow M^2=64\Leftrightarrow M=8\left(\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)>0\right)\)

\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)
\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=3-\sqrt{5}+\sqrt{5}-1=2\)
\(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{5}\)
\(=\sqrt{5}+2-\sqrt{5}=2\)
Chúc học tốt!!!!!!!!!!!!!
\(\sqrt{20}=\sqrt{4.5}=\sqrt{2^2.5}=\left|2\right|.\sqrt{5}=2\sqrt{5}\)
\(\sqrt{20}=\sqrt{4.5}=\sqrt{2^2.5}=\sqrt{2^2}.\sqrt{5}=2\sqrt{5}\)