\(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k\)

\(c=d.k\)

Ta có:

\(\frac{2a+3c}{2b+3d}=\frac{2bk+3dk}{2b+3d}=\frac{k\left(2b+3d\right)}{2b+3d}=k\) (trường hợp 1)

\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (trường hợp 2)

Từ trường hợp 1 và 2trên:

\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

16 tháng 5

\(A = \frac{2 a + 3 c}{2 b + 3 d}\)

\(B = \frac{2 a - 3 c}{2 b - 3 d}\)

\(A - B = \frac{2 a + 3 c}{2 b + 3 d} - \frac{2 a - 3 c}{2 b - 3 d}\)

Quy đồng mẫu:

\(A - B = \frac{\left(\right. 2 a + 3 c \left.\right) \left(\right. 2 b - 3 d \left.\right) - \left(\right. 2 a - 3 c \left.\right) \left(\right. 2 b + 3 d \left.\right)}{\left(\right. 2 b + 3 d \left.\right) \left(\right. 2 b - 3 d \left.\right)}\)

Tính tử số:

\(\left(\right. 2 a + 3 c \left.\right) \left(\right. 2 b - 3 d \left.\right) = 4 a b - 6 a d + 6 b c - 9 c d\)

\(\left(\right. 2 a - 3 c \left.\right) \left(\right. 2 b + 3 d \left.\right) = 4 a b + 6 a d - 6 b c - 9 c d\)

Lấy hiệu hai biểu thức:

\(\left[\right. 4 a b - 6 a d + 6 b c - 9 c d \left]\right. - \left[\right. 4 a b + 6 a d - 6 b c - 9 c d \left]\right.\)

\(= 4 a b - 6 a d + 6 b c - 9 c d - 4 a b - 6 a d + 6 b c + 9 c d\)

\(= \left(\right. - 12 a d + 12 b c \left.\right)\)

=> Tử số khác 0 trừ khi \(b c = a d\).
vậy

\(\frac{2 a + 3 c}{2 b + 3 d}=\frac{2 a - 3 c}{2 b - 3 d}\) nếu \(ad=bc\)

11 tháng 8 2016

Vì theo định lí sgk thì

\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a-c}{b-d}=\frac{a+c}{b+d}\)từ định lí đó suy ra \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\)

bạn à viết sai đề rồi nhá

2 tháng 10 2018

cho \(\frac{a}{b}\)\(\frac{c}{d}\)

2 tháng 10 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\implies \frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\) (đpcm).

_Học tốt_

29 tháng 9 2017

Ta có :

\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

\(\Leftrightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a}{2b}=\dfrac{3c}{3d}\) (Áp dụng t/c dãy tỉ số bằng nhau)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

24 tháng 8 2020

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\left(\text{đpcm}\right)\)

24 tháng 8 2020

\(\frac{a}{b}=\frac{2a}{2b}\) 

\(\frac{c}{d}=\frac{-3c}{-3d}\) 

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{2a-3c}{2b-3d}\)

19 tháng 9 2019

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C+2A-3C}{2B+3D+2B-3D}=\frac{4A}{4B}=\frac{A}{B}\left(1\right)\)\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C-2A+3C}{2B+3D-2B+3D}=\frac{6C}{6D}=\frac{C}{D}\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{A}{B}=\frac{C}{D}\)

19 tháng 9 2019

Giải :

Từ đảng thức : \(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2b+3d\right).\left(2a-3c\right)\)

\(\Rightarrow4ab-6ad+6bc-9cd=4ab-6bc+6ad-9cd\)

\(\Rightarrow\left(4ab-6ad+6bc-9cd\right)-\left(4ab-6bc+6ad-9cd\right)=0\)

\(\Rightarrow4ab-6ad+6bc-9cd-4ab+6bc-6ad+9cd=0\)

\(\Rightarrow\left(4ab-4ab\right)-\left(6ad+6ad\right)+\left(6bc+6bc\right)-\left(9cd-9cd\right)=0\)

\(\Rightarrow-12ad+12bc=0\)

\(\Rightarrow12bc=12ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)

25 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

a) => \(\frac{2a+c}{2b+d}=\frac{2kb+kd}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\) (1)

\(\frac{2a-3c}{2b-3d}=\frac{2kb-3kd}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (2)

Từ (1) và (2) => \(\frac{2a+c}{2b+d}=\frac{2a-3c}{2b-3d}\)

b) => \(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)