Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:
a: TH1: p=2
\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố
=>Nhận
TH2: p=2k+1
\(5p+3=5\left(2k+1\right)+3\)
=10k+5+3
=10k+8
=2(5k+4)⋮2
=>Loại
Vậy: p=2
b: TH1: p=3
p+8=3+8=11; p+10=3+10=13
=>Nhận
TH2: p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>Loại
TH3: p=3k+2
p+10
=3k+2+10
=3k+12
=3(k+4)⋮3
=>Loại
Vậy: p=3
c: TH1: p=5
p+2=5+2=7
p+6=5+6=11
p+18=5+18=23
p+24=5+24=29
=>Nhận
TH2: p=5k+1
p+24
=5k+1+24
=5k+25
=5(k+5)⋮5
=>Loại
TH3: p=5k+2
p+18
=5k+2+18
=5k+20
=5(k+4)⋮5
=>Loại
TH4: p=5k+3
p+2=5k+3+2
=5k+5
=5(k+1)⋮5
=>Loại
TH5: p=5k+4
p+6=5k+4+6
=5k+10
=5(k+2)⋮5
=>Loại
Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3
=>Loại
=>p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>p+8 là hợp số

Giải:
Vì \(\overline{abcd},\overline{ab}\) và \(\overline{ac}\) là các số nguyên tố
\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)
Ta có:
\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)
\(=10c+d-c=10c-c+d=9c+d\)
Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)
\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)
Ta có các trường hợp sau:
\(*)\) Nếu \(b=7\) ta có:
\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)
Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)
Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)
\(*)\) Nếu \(b=9\) ta có:
\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)
\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)
\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)
\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)
Mặt khác \(a\ne0\Rightarrow a=1\)
Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

số nguyên tố nhỏ nhất : 2
số lớn nhất có 1 chữ số : 9
số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5
số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5
abcd = 2955
Số nguyên tố nhỏ nhất là 2 => a = 2
Số lớn nhất có 1 chữ số là 9 => b = 9
Số nguyên tố chia hết cho 5 là 5 => c = 5
Số nhỏ nhất chia hết cho 5 là 0 => d = 0
abcd = 2950. Năm đó là năm 2950
Mình thấy nó vô lí thế nào ấy

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Bài 4:
a: TH1: p=2
\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố
=>Nhận
TH2: p=2k+1
\(5p+3=5\left(2k+1\right)+3\)
=10k+5+3
=10k+8
=2(5k+4)⋮2
=>Loại
Vậy: p=2
b: TH1: p=3
p+8=3+8=11; p+10=3+10=13
=>Nhận
TH2: p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>Loại
TH3: p=3k+2
p+10
=3k+2+10
=3k+12
=3(k+4)⋮3
=>Loại
Vậy: p=3
c: TH1: p=5
p+2=5+2=7
p+6=5+6=11
p+18=5+18=23
p+24=5+24=29
=>Nhận
TH2: p=5k+1
p+24
=5k+1+24
=5k+25
=5(k+5)⋮5
=>Loại
TH3: p=5k+2
p+18
=5k+2+18
=5k+20
=5(k+4)⋮5
=>Loại
TH4: p=5k+3
p+2=5k+3+2
=5k+5
=5(k+1)⋮5
=>Loại
TH5: p=5k+4
p+6=5k+4+6
=5k+10
=5(k+2)⋮5
=>Loại
Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3
=>Loại
=>p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>p+8 là hợp số
Bài 4
a) Tìm \(p\) nguyên tố sao cho \(5 p + 3\) cũng nguyên tố.
...
👉 Chỉ có \(p = 2\).
b) Tìm \(p\) nguyên tố sao cho \(p + 8\) và \(p + 10\) cũng nguyên tố.
...
👉 Chỉ có \(p = 3\).
c) Tìm \(p\) nguyên tố sao cho \(p + 2 , p + 6 , p + 18 , p + 24\) đều nguyên tố.
Thử các số nhỏ:
...
👉 Chỉ có \(p = 5\).
Kết quả Bài 4:
a) \(p = 2\)
b) \(p = 3\)
c) \(p = 5\)
Bài 5
Cho \(p\) nguyên tố > 3 và \(p + 4\) cũng nguyên tố. Chứng minh \(p + 8\) hợp số.
\(p + 8 \equiv 3 \left(\right. m o d 6 \left.\right)\)
nên \(p + 8\) chia hết cho 3. Mà \(p + 8 > 3\), vậy \(p + 8\) hợp số.
👉 Vậy chỉ có trường hợp \(p \equiv 1 \left(\right. m o d 6 \left.\right)\) xảy ra, và khi đó \(p + 8\) luôn chia hết cho 3, tức là hợp số.
✅ Kết quả Bài 5: Chứng minh được \(p + 8\) hợp số.