\(p\) sao cho:<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số

27 tháng 9

Bài 4

a) Tìm \(p\) nguyên tố sao cho \(5 p + 3\) cũng nguyên tố.

  • Thử \(p = 2\): \(5 \cdot 2 + 3 = 13\) (nguyên tố) ✅
  • Thử \(p = 3\): \(5 \cdot 3 + 3 = 18\) (hợp số) ❌
  • Thử \(p = 5\): \(5 \cdot 5 + 3 = 28\) (hợp số) ❌
  • Thử \(p = 7\): \(5 \cdot 7 + 3 = 38\) (hợp số) ❌
    ...
    👉 Chỉ có \(p = 2\).

b) Tìm \(p\) nguyên tố sao cho \(p + 8\)\(p + 10\) cũng nguyên tố.

  • Thử \(p = 2\): \(p + 8 = 10\) (hợp số) ❌
  • Thử \(p = 3\): \(p + 8 = 11\) (nguyên tố), \(p + 10 = 13\) (nguyên tố) ✅
  • Thử \(p = 5\): \(p + 8 = 13\) (nguyên tố), \(p + 10 = 15\) (hợp số) ❌
  • Thử \(p = 7\): \(p + 8 = 15\) (hợp số) ❌
    ...
    👉 Chỉ có \(p = 3\).

c) Tìm \(p\) nguyên tố sao cho \(p + 2 , p + 6 , p + 18 , p + 24\) đều nguyên tố.

Thử các số nhỏ:

  • \(p = 2\): \(p + 2 = 4\) (hợp số) ❌
  • \(p = 3\): \(5 , 9 , 21 , 27\) → có hợp số ❌
  • \(p = 5\): \(7 , 11 , 23 , 29\) → tất cả nguyên tố ✅
  • Thử \(p = 7\): \(9\) hợp số ❌
  • \(p = 11\): \(13 , 17 , 29 , 35\) → 35 hợp số ❌
    ...

👉 Chỉ có \(p = 5\).

Kết quả Bài 4:
a) \(p = 2\)
b) \(p = 3\)
c) \(p = 5\)


Bài 5

Cho \(p\) nguyên tố > 3 và \(p + 4\) cũng nguyên tố. Chứng minh \(p + 8\) hợp số.

  • \(p > 3\) và nguyên tố, nên \(p \equiv 1 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 5 \left(\right. m o d 6 \left.\right)\).
  • Nếu \(p \equiv 1 \left(\right. m o d 6 \left.\right)\), thì \(p + 4 \equiv 5 \left(\right. m o d 6 \left.\right)\) (có thể là số nguyên tố). Khi đó:
    \(p + 8 \equiv 3 \left(\right. m o d 6 \left.\right)\)
    nên \(p + 8\) chia hết cho 3. Mà \(p + 8 > 3\), vậy \(p + 8\) hợp số.
  • Nếu \(p \equiv 5 \left(\right. m o d 6 \left.\right)\), thì \(p + 4 \equiv 3 \left(\right. m o d 6 \left.\right)\). Khi đó \(p + 4\) sẽ chia hết cho 3, chỉ có thể bằng 3. Nhưng \(p + 4 > 3\) (do \(p > 3\)), nên mâu thuẫn.

👉 Vậy chỉ có trường hợp \(p \equiv 1 \left(\right. m o d 6 \left.\right)\) xảy ra, và khi đó \(p + 8\) luôn chia hết cho 3, tức là hợp số.


Kết quả Bài 5: Chứng minh được \(p + 8\) hợp số.


Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số

14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy

1 tháng 6 2018

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)

\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)

\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)

Từ (1);(2)\(\Rightarrow0< D< 1\)

\(\Rightarrowđpcm\)

20 tháng 7 2020

a,\(C>0\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)

\(\Rightarrow0< A< 1\)

\(\Rightarrow A\notinℤ\)

c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Ta quy đồng 3 số đầu

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)

\(1< E< 2\)

\(E\notinℤ\)