Bài 4: Cho ∆ABC, các tia phân giác góc B ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\hat{BAD}=\hat{BED}\)

=>\(\hat{BED}=90^0\)

=>DE⊥BC

mà AH⊥BC

nên DE//AH

c: Xét ΔMHA và ΔMDK có

MH=MD

\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)

HA=DK

Do đó: ΔMHA=ΔMDK

=>\(\hat{HMA}=\hat{DMK}\)

\(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)

nên \(\hat{AMD}+\hat{DMK}=180^0\)

=>A,M,K thẳng hàng

30 tháng 8

Chúng ta sẽ giải từng câu hỏi trong bài toán này.

Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED

  • Điều kiện:
    • ∆ABC vuông tại A (AB < AC).
    • Tia phân giác của góc B cắt AC tại D.
    • Trên cạnh BC lấy điểm E sao cho BE = BA.
    • Vẽ AH BC tại H.
  • Chứng minh:
  1. Xét các tam giác ∆ABD và ∆EBD:
    Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
    \(\Delta A B D = \Delta E B D\)
    • Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
    • AB = BE (do đề bài cho BE = BA).
    • Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
  2. Kết luận AD = ED:
    • Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
    • Vậy, AD = ED.

Câu b) Chứng minh AH // DE

  1. Xét đoạn AH và DE:
    • Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
    • Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
  2. Chứng minh AH // DE:
    • Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
    • Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.

Câu c) Chứng minh A, M, K thẳng hàng

  1. Định nghĩa các điểm:
    • Trên tia DE, lấy điểm K sao cho DK = AH.
    • M là trung điểm của DH, tức là:
      \(\text{DM} = \text{MH}\)
  2. Chứng minh A, M, K thẳng hàng:
    • Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
    • M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
    • Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.

Kết luận:

  1. a) ∆ABD = ∆EBD và AD = ED.
  2. b) AH // DE.
  3. c) A, M, K thẳng hàng.
9 giờ trước (21:20)

a) EA = EH

Xét ΔABE và ΔHBE vuông tại A và H:

  • Góc ABE chung
  • Góc BAE = góc EBC (BE là phân giác)
    ⇒ ΔABE ∽ ΔHBE
    ⇒ EA = EH

b) EK = EC

Xét ΔAEC và ΔHEK vuông tại A và H:

  • Góc tại E chung
  • EA = EH (câu a)
    ⇒ ΔAEC ∽ ΔHEK
    ⇒ EK = EC

c) BE ⊥ KC

Vì EK = EC ⇒ ΔECK cân tại E
⇒ BE vừa là phân giác vừa là đường cao
⇒ BE ⊥ KC

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C

3 tháng 3 2018

a)\(\Delta ABH\) vuông tại H có:

BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)

=> BH=5 cm

BC=BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có:

AH2 + HC2 =AC2 ( đl Pytago)

=> AC2 =122 + 162 =20 cm

b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL  Pytago)

=> BH2 =AB2 - AH2 =132 - 122 =25

=> BH=5 cm

BC= BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)

=> AC2 = 122 + 162 =400

=> AC= 20 cm 

12 tháng 6 2017

A B C G H

a) Ta có:

\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến

\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H, ta có:

\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )

\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)

\(\Rightarrow AH=4\left(cm\right)\) (AH>0)

Vậy BH=3 cm; AH=4 cm

12 tháng 6 2017

Tham khảo hình bài làm đầy đủ :

Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến

Chúc bn học tốt!

14 tháng 6 2017

Hình vẽ:

A C B E K D

a/ Xét 2Δ vuông:ΔACE và ΔAKE có:

AE: chung

\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)

=> ΔACE = ΔAKE (ch-gn)

=> AC = AK (đpcm)

b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)

\(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)

=> \(\widehat{KAE}=\widehat{B}=30^o\)

=> \(\Delta EAB\) cân tại E

mà EK _l_ AB (gt)

=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)

=> KA = KB (đpcm)

c/ Xét \(\Delta EAB\) có:

EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)

AC _l_ BE ké dài (gt)

=> EK, BD, AC đồng quy tại 1 điểm (đpcm)

14 tháng 6 2017

đáp án ở đây bạn nha trừ câu c):

https://hoc24.vn/hoi-dap/question/59956.html