Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)
Vì BN = DQ , AD = BC => AD - DQ = BC - BN hay AQ = NC
Xét tam giác AQM và CNP có:
\(\hept{\begin{cases}AQ=CN\\AM=CP\\\widehat{QAM}=\widehat{NCP}\left(doABCDl\text{à}hbh\right)\end{cases}}\)
\(\Rightarrow\Delta AQM=\Delta CNP\left(c.g.c\right)\Rightarrow QM=NP\)
Hoàn toàn tương tự: △MBN=△PDQ(c.g.c)⇒MN=PQ
Tứ giác MNPQMNPQ có 2 cặp cạnh đối bằng nhau nên là hình bình hành.
=> MNPQ là hình bình hành.
b) Gọi K là giao điểm của AC và MP
Xét tam giác AKM và CKP ta có:
\(\hept{\begin{cases}\widehat{KAM}=\widehat{KCP}\left(slt\right)\\\widehat{KMA}=\widehat{KPC\left(slt\right)}\\\Rightarrow AM=CP\end{cases}}\)
\(\Rightarrow\Delta AKM=\Delta CKP\left(g.c.g\right)\)
\(\Rightarrow AK=CK;KM=KP\left(1\right)\)
Vì ABCDABCD là hình bình hành nên hai đường chéo AC,BDAC,BD cắt nhau tại trung điểm mỗi đường. Tương tự, MNPQMNPQ là hình bình hành nên MP,QNMP,QN cắt nhau tại trung điểm mỗi đường
Mà từ (1)(1) suy ra KK là trung điểm của AC,MPAC,MP, do đó KK cũng là trung điểm của BD,QNBD,QN
Do đó AC,BD,MP,NQAC,BD,MP,NQ đồng quy tại (trung điểm) KK.

Hình vẽ đây :
YAX34P43.jpg (578×558)
Bài làm để Cô Quản Lý giúp đỡ nhá bn :)
Hc tốt
A B C D E F H G I
a) Gọi I là trung điểm AF
=> AI = IF = FD = 1/3 AD = 1/3 BC = BE
Mà AI//BE ( vì AD //BC)
=> ABEI là hình bình hành.
=> EI //AB (1)
Xét tam giác AFH có: IE//AG ( theo (1) ) và I là trung điểm AF
=> E là trung điểm FG => EG = EF
Dễ dàng chứng minh được \(\Delta FHD=\Delta EGB\)=> HF = GE
=> GE = HF = EF
b ) DF = 1/3 DA => AF= 2/3 DA
BE = 1/3 BC => EC = 2/3 BC
Vì ABCD là hình bình hành => DA = BC => AF = EC
Mà AF// EC ( vì AD //BC )
=> AF//=EC
=> AECF là hình bình hành.

a: Ta có: AM+MB=AB
CP+PD=CD
AQ+QD=AD
CN+NB=CB
mà AM=CP=AQ=CN và AB=CD=AD=CB
nên MB=PD=QD=NB
Xét tứ giác BMDP có
BM//DP
BM=DP
Do đó: BMDP là hình bình hành
b: ABCD là hình thoi
=>AC⊥BD tại O và O là trung điểm chung của AC và BD
Xét tứ giác BNDQ có
BN//DQ
BN=DQ
Do đó: BNDQ là hình bình hành
=>BD cắt NQ tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của NQ
=>N,O,Q thẳng hàng
c: AMCP là hình bình hành
=>AC cắt MP tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MP
ΔAMQ cân tại A
=>\(\hat{AMQ}=\frac{180^0-\hat{MAQ}}{2}=\frac{180^0-\hat{BAD}}{2}\left(1\right)\)
ΔABD cân tại A
=>\(\hat{ABD}=\frac{180^0-\hat{BAD}}{2}\left(2\right)\)
Từ (1),(2) suy ra \(\hat{AMQ}=\hat{ABD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên MQ//BD
Ta có: DQ=DP
=>ΔDQP cân tại D
=>\(\hat{DQP}=\frac{180^0-\hat{QDP}}{2}=\frac{180^0-\hat{ADC}}{2}\left(3\right)\)
ΔDAC cân tại D
=>\(\hat{DAC}=\frac{180^0-\hat{ADC}}{2}\left(4\right)\)
Từ (3),(4) suy ra \(\hat{DQP}=\hat{DAC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên PQ//AC
mà AC⊥BD
nên PQ⊥BD
Ta có: PQ⊥BD
QM//BD
DO đó: QM⊥QP
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
=>MNPQ là hình bình hành
Hình bình hành MNPQ có QM⊥QP
nên MNPQ là hình chữ nhật
Xét ΔMBN và ΔPDQ có
MB=PD
góc B=góc D
BN=DQ
=>ΔMBN=ΔPDQ
=>MN=PQ
Xét ΔAMQ và ΔCPN có
AM=CP
góc A=góc C
AQ=CN
=>ΔAMQ=ΔCPN
=>MQ=PN
mà MN=PQ
nên MNPQ là hình bình hành