Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}=\sqrt{25}=5\)
b) \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}=\sqrt{9.25}=\sqrt{9}.\sqrt{25}=3.5=15\)
c) \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{9.225}=\sqrt{9}.\sqrt{225}=3.15=45\)

a. \(\sqrt{13^2-12^2}\)
=\(\sqrt{\left(13+12\right).\left(13-12\right)}\)
=\(\sqrt{25.1}\)
=\(\sqrt{25}.\sqrt{1}\)
=5.1
=5
b. \(\sqrt{17^2-8^2}\)
=\(\sqrt{\left(17+8\right).\left(17-8\right)}\)
=\(\sqrt{25.9}\)
=\(\sqrt{25}.\sqrt{9}\)
=5.3
=15
c. \(\sqrt{117^2-108^2}\)
=\(\sqrt{\left(117+108\right).\left(117-108\right)}\)
=\(\sqrt{225.9}\)
=\(\sqrt{225}.\sqrt{9}\)
=15.3
=45
d. \(\sqrt{313^2-312^2}\)
=\(\sqrt{\left(313+312\right).\left(313-312\right)}\)
=\(\sqrt{625.1}\)
=\(\sqrt{625}.\sqrt{1}\)
=25.1
=25
c.\(\sqrt{117^2-108^2}\)

a, \(\sqrt{54}=\sqrt{9.6}=3\sqrt{6}\)
b, \(\sqrt{108}=\sqrt{36.3}=6\sqrt{3}\)
c, \(0,1\sqrt{20000}=0,1\sqrt{2.10000}=10\sqrt{2}\)
d, \(-0,05\sqrt{28800}=-0,05\sqrt{288.100}=-0,05.10.\sqrt{144.2}\)
\(=-0,5.12\sqrt{2}=-6\sqrt{2}\)
e, \(\sqrt{7.63.a^2}=\sqrt{7.7.9.a^2}=21\left|a\right|\)
a) √54=√9.6=√9.√6=3√654=9.6=9.6=36.
b) √108=√36.3=√36.√3=6√3108=36.3=36.3=63.
c) 0,1√20000=0,1√2.10000=0,1√2.√100000,120000=0,12.10000=0,12.10000
=0,1.100√2=10√2=0,1.1002=102.
d) −0,05√28800=−0,05√288.100−0,0528800=−0,05288.100
=

a) \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{9\cdot225}=\sqrt{3^2\cdot15^2}=\left|3\cdot15\right|=45\)
b) \(\sqrt{9-4\sqrt{5}}+2=\sqrt{5-4\sqrt{5}+4}+2=\sqrt{\left(\sqrt{5}-2\right)^2}+2=\left|\sqrt{5}-2\right|+2=\sqrt{5}\)
\(a,\sqrt{117^2-108^2}\\ =\sqrt{\left(117-108\right)\left(117+108\right)}\\ =\sqrt{9.225}\\ =\sqrt{3^2}.\sqrt{15^2}\\ =3.15\\ =45\)
\(b,\sqrt{9-4\sqrt{5}}+2=\sqrt{5}\)
\(VT=\sqrt{9-4\sqrt{5}}+2\\ =\sqrt{\sqrt{5^2}-2.2\sqrt{5}+2^2}+2\\ =\sqrt{\left(\sqrt{5}-2\right)^2}+2\\ =\left|\sqrt{5}-2\right|+2\\ =\sqrt{5}-2+2\\ =\sqrt{5}=VP\left(dpcm\right)\)

a, \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}\)
\(=\sqrt{1.25}=\sqrt{25}=5\)
b, \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}\)
\(=\sqrt{9.25}=\sqrt{9}.\sqrt{25}=3.5=15\)
c, \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}\)
\(=\sqrt{9.225}=\sqrt{9}.\sqrt{225}=3.15=45\)
d, \(\sqrt{313^2-312^2}=\sqrt{\left(313-312\right)\left(313+312\right)}\)
\(=\sqrt{1.625}=\sqrt{625}=25\)
Chúc bạn học tốt!!!
a, \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}=\sqrt{25}=5\)
b, \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}=\sqrt{9.25}=15\)
c, \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}\)
\(=\sqrt{9.225}=45\)
d, \(\sqrt{313^2-312^2}=\sqrt{\left(313-312\right)\left(313+312\right)}=\sqrt{625}=25\)

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}−9a−9+12a+4a2
=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}=−9a−32+2.3.2a+(2a)2
=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}=32⋅(−a)−(3+2a)2
=3 \sqrt{-a}-|3+2 a|=3−a−∣3+2a∣
Thay a=-9a=−9 ta được:
3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-639−∣3+2⋅(−9)∣=3.3−15=−6.
b) Điều kiện: m \neq 2m=2

+ Ta có:
2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)
=2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5
=2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).
+ Ta có:
3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)
=3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7
=3(√10−√7)3=√10−√7=3(10−7)3=10−7.
+ Ta có:
1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)
=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y
+ Ta có:
2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)
=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.
\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)
\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)

\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)
\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)
\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)
\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)
+ Ta có:
5√10=5.√10√10.√10=5√10(√10)2=5√1010510=5.1010.10=510(10)2=51010
=5.√105.2=5.105.2=√102=102.
+ Ta có:
52√5=5.√52√5.√5=

+ Ta có:
3√3+1=3(√3−1)(√3+1)(√3−1)=3√3−3.1(√3)2−1233+1=3(3−1)(3+1)(3−1)=33−3.1(3)2−12
=3√3−33−1=3√3−32=33−33−1=33−32.
+ Ta có:
2√3−1=2(√
\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3\sqrt{3}-3}{3-1}=\frac{3\sqrt{3}-3}{2}\)
\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}-1\)
\(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3}=\left(2+\sqrt{3}\right)^2=4+4\sqrt{3}+3=7+4\sqrt{3}\)
\(\frac{b}{3+\sqrt{b}}=\frac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\frac{b\left(3-\sqrt{b}\right)}{9-b}\)
\(\frac{p}{2\sqrt{p}-1}=\frac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}-1\right)\left(2\sqrt{b}+1\right)}=\frac{p\left(2\sqrt{b}+1\right)}{4p-1}\)
a) \(\sqrt{13^2-12^2}\)=\(\sqrt{\left(13-12\right)\left(13+12\right)}\)=\(\sqrt{1x25}\)=5
Câu a: Ta có:
√132−122=√(13+12)(13−12)132−122=(13+12)(13−12)
=√25.1=√25=25.1=25
=√52=|5|=5=52=|5|=5.
Câu b: Ta có:
√172−82=√(17+8)(17−8)172−82=(17+8)(17−8)
=√25.9=√25.√9=25.9=25.9
=√52.√32=|5|.|3|=52.32=|5|.|3|.
=5.3=15=5.3=15.
Câu c: Ta có:
√1172−1082=√(117−108)(117+108)1172−1082=(117−108)(117+108)
=√9.225=9.225 =√9.√225=9.225
=√32.√152=|3|.|15|=32.152=|3|.|15|
=3.15=45=3.15=45.
Câu d: Ta có:
√3132−3122=√(313−312)(313+312)3132−3122=(313−312)(313+312)
=√1.625=√625=1.625=625
=√252=|25|=25=252=|25|=25.