Bài 1:Cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6.\)Tìm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

Bài 1: Tổng không đổi tích lớn nhất khi 2 số bằng nhau

Do \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)(không đổi)

Nên \(\frac{1}{\sqrt{xy}}\)lớn nhất \(\Leftrightarrow\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{y}}=3\Leftrightarrow x=y=9\)

Khi đó Max \(\frac{1}{\sqrt{xy}}=3.3=9\)
 

Bạn gì ấy trả lời sai cmnr 

25 tháng 8

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36

= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36

= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36

= x² + y² + 36

b) Do x² ≥ 0 với mọi x ∈ R

y² ≥ 0 với mọi x ∈ R

Q = x² + y² + 36 ≥ 36 với mọi x ∈ R

Q nhỏ nhất khi x² + y² = 0

⇒ x = y = 0

Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

28 tháng 12 2015

Áp dụng Cosi

\(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}\ge2\)

\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge4\)

\(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}\ge8\)

=> VT >/ VP

Dấu ' = ' xảy ra khi 2x -3 =1=>x =2

                             y -2 = 4 => y =6

                              3z -1 =16 => z =17/3

27 tháng 4 2020

Em vào câu hỏi tương tự tham khảo: 

a) Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)

Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)

<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)

<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)

<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)

a) \(\frac{x^2}{a}=\frac{y^2}{b}\Leftrightarrow bx^2=ay^2\)

b)  \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)

Khi đó: \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=2\frac{x^{2008}}{a^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)