
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có : 2x+3y-2=186 \(\Rightarrow\)2x+3y=188
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)( AD tc của dãy tỉ số = nhau)
x=\(\frac{94}{45}.15=\frac{94}{3}\)
y=\(\frac{94}{45}.20=\frac{376}{9}\)
z=\(\frac{94}{45}.28=\frac{2632}{45}\)
vậy(x,y,z)=(\(\frac{94}{3};\frac{376}{9};\frac{2632}{45}\))

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
+) \(\frac{x}{15}=3\Rightarrow x=45\)
+) \(\frac{y}{20}=3\Rightarrow y=60\)
+) \(\frac{z}{28}=3\Rightarrow z=84\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(45,60,84\right)\)

a,Ta có:\(2x+3y-2=186\Rightarrow2x+3y=188\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{94}{45}\Rightarrow x=\frac{94}{3}\\\frac{y}{20}=\frac{94}{45}\Rightarrow x=\frac{376}{9}\\\frac{z}{28}=\frac{94}{45}\Rightarrow x=\frac{2632}{45}\end{cases}}\)
b,Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{18}=\frac{2x+3y-z}{2.15+3.20-18}=\frac{372}{62}=6\)
Tự tìm x
c,\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Tự áp dụng

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{x-2y+4z}{20-2\cdot9+4\cdot6}=\frac{13}{26}=\frac12\)
=>\(\begin{cases}x=20\cdot\frac12=10\\ y=9\cdot\frac12=\frac92\\ z=6\cdot\frac12=3\end{cases}\)
2: \(\frac{x}{3}=\frac{y}{4}\)
=>\(\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\)
=>\(\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2\cdot15+3\cdot20-28}=\frac{186}{62}=3\)
=>\(\begin{cases}x=3\cdot15=45\\ y=3\cdot20=60\\ z=3\cdot28=84\end{cases}\)
3: \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)
=>\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}\)
mà 3x+5y+7z=123
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}=\frac{3x+5y+7z}{3\cdot2+5\cdot2,5+7\cdot1,75}=\frac{123}{30,75}=4\)
=>\(\begin{cases}x=4\cdot2=8\\ y=4\cdot2,5=10\\ z=4\cdot1,75=7\end{cases}\)
4: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
=>\(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}\)
Đặt \(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}=k\)
=>\(x=2k;y=\frac32k;z=\frac43k\)
xyz=-108
=>\(2k\cdot\frac32k\cdot\frac43k=-108\)
=>\(4k^3=-108\)
=>\(k^3=-27\)
=>k=-3
=>\(\begin{cases}x=2\cdot\left(-3\right)=-6\\ y=\frac32\cdot\left(-3\right)=-\frac92\\ z=\frac43\cdot\left(-3\right)=-4\end{cases}\)

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
⇒ \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒\(\left\{{}\begin{matrix}x=3.15=45\\y=3.20=60\\z=3.28=84\end{matrix}\right.\)
Ta có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=3\)
=> \(\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )