Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)\(\Leftrightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\)\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)
Mà xyz = -108
\(\Leftrightarrow2k.\frac{3}{2}k.\frac{4}{3}k=-108\)
\(\Leftrightarrow4k^3=-108\)
<=> k3 = -27
<=> k = -3
\(\Leftrightarrow\hept{\begin{cases}x=2k=2.-3=-6\\y=\frac{3}{2}k=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}k=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)
2, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)\(\Leftrightarrow\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}=\frac{2x+3y-4z}{10+21-32}=\frac{15}{-1}=-15\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-15\\\frac{y}{7}=-15\\\frac{z}{8}=-15\end{cases}}\Rightarrow\hept{\begin{cases}x=-75\\y=-105\\z=-120\end{cases}}\)
3, 3x = 5y \(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)\(\Leftrightarrow\frac{x}{55}=\frac{y}{33}\)
2y = 11z \(\Leftrightarrow\frac{y}{11}=\frac{z}{2}\) \(\Leftrightarrow\frac{y}{33}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{55}=\frac{y}{33}=\frac{z}{6}\)\(\Rightarrow\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}=\frac{2x+5y-z}{110+165-6}=\frac{34}{269}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{55}=\frac{34}{269}\\\frac{y}{33}=\frac{34}{269}\\\frac{z}{6}=\frac{34}{269}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1870}{269}\\y=\frac{1122}{269}\\z=\frac{204}{269}\end{cases}}\)
4, \(\frac{x}{3}=\frac{2}{y}=\frac{z}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=\frac{2}{k}\\z=4k\end{cases}}\)
Mà xyz = 240
<=> 3k . 2/k . 4k = 240
<=> 24k = 240
<=> k = 10
\(\Leftrightarrow\hept{\begin{cases}x=3k=3.10=30\\y=\frac{2}{k}=\frac{2}{10}=\frac{1}{5}\\z=4k=4.10=40\end{cases}}\)

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...

mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{x-2y+4z}{20-2\cdot9+4\cdot6}=\frac{13}{26}=\frac12\)
=>\(\begin{cases}x=20\cdot\frac12=10\\ y=9\cdot\frac12=\frac92\\ z=6\cdot\frac12=3\end{cases}\)
2: \(\frac{x}{3}=\frac{y}{4}\)
=>\(\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\)
=>\(\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2\cdot15+3\cdot20-28}=\frac{186}{62}=3\)
=>\(\begin{cases}x=3\cdot15=45\\ y=3\cdot20=60\\ z=3\cdot28=84\end{cases}\)
3: \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)
=>\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}\)
mà 3x+5y+7z=123
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}=\frac{3x+5y+7z}{3\cdot2+5\cdot2,5+7\cdot1,75}=\frac{123}{30,75}=4\)
=>\(\begin{cases}x=4\cdot2=8\\ y=4\cdot2,5=10\\ z=4\cdot1,75=7\end{cases}\)
4: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
=>\(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}\)
Đặt \(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}=k\)
=>\(x=2k;y=\frac32k;z=\frac43k\)
xyz=-108
=>\(2k\cdot\frac32k\cdot\frac43k=-108\)
=>\(4k^3=-108\)
=>\(k^3=-27\)
=>k=-3
=>\(\begin{cases}x=2\cdot\left(-3\right)=-6\\ y=\frac32\cdot\left(-3\right)=-\frac92\\ z=\frac43\cdot\left(-3\right)=-4\end{cases}\)