K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{x^3+5x-40}{x+4}=\dfrac{x^3+4x^2-4x^2-16x+21x-84+44}{x+4}\)

\(=x^2-4x+21+\dfrac{44}{x+4}\)

b: \(=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

Bài 3:

a: \(A=\frac{1}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{4-x}\)

\(=\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}-\frac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-2-\sqrt{x}-2-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{-2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=-\frac{2}{\sqrt{x}-2}\)

b: Thay x=3 vào A, ta được: \(A=-\frac{2}{\sqrt3-2}=\frac{2}{2-\sqrt3}=2\left(2+\sqrt3\right)=4+2\sqrt3\)

Bài 2:

a: \(A=\frac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\frac{4-a}{\sqrt{a}-2}\)

\(=\frac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)=0\)

b: \(B=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}:\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}\cdot\frac{1}{\left(\sqrt{x}-\sqrt{y}\right)^2}=\frac{x-\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)

Bài 1:

a: \(A=\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\frac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

b: \(B=\frac{x-1}{\sqrt{y}-1}\cdot\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)

\(=\frac{\left(x-1\right)}{\sqrt{y}-1}\cdot\frac{\left|y-2\sqrt{y}+1\right|}{\left|\left(x-1\right)^2\right|}\)

\(=\left(x-1\right)\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\left(\sqrt{y}-1\right)}{x-1}\)

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)