Bài 1 (5đ): Cho DABC vuông tại A, có AB = 5cm, AC = 12cm.

a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

a, Theo Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{25+144}=13\)cm 

b,c ta có : sinB = \(\frac{AC}{BC}=\frac{12}{13}\)

Do ^B ; ^C phụ nhau nên \(sinB=cosC=\frac{12}{13}\)=> ^C = 22037'11.51'' ; => ^B = \(67,4^0\)

2 tháng 11 2021

a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow BC^2=AB^2+AC^2\left(đlPytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=\sqrt{25+144}=\sqrt{169}=13\left(cm\right)\)

b) \(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow\sin B=\frac{AC}{BC}=\frac{12}{13};\cos B=\frac{AB}{BC}=\frac{5}{13};\tan B=\frac{AC}{AB}=\frac{12}{5};\cot B=\frac{AB}{AC}=\frac{5}{12}\)

c) \(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow\sin C=\frac{AB}{BC}=\frac{5}{13}\Rightarrow\widehat{C}\approx23^0\)

a: Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay BC=13(cm)

b: Xét ΔBAC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\tan\widehat{B}=\dfrac{12}{5}\)

\(\cot\widehat{B}=\dfrac{5}{12}\)

8 tháng 10 2021

\(a,\sin\widehat{C}=\dfrac{AB}{BC};\cos\widehat{C}=\dfrac{AC}{BC};\tan\widehat{C}=\dfrac{AB}{AC};\cot\widehat{C}=\dfrac{AC}{AB}\\ b,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13};\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\\ \tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5};\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{5}{12}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5}\approx\tan67^022'\\ \Rightarrow\widehat{B}\approx67^022'\\ \Rightarrow\widehat{C}=90^0-67^022'=22^038'\)

 

22 tháng 9 2017

a) Ta có: \(AC=AB.\cot\widehat{C}=21.\cot\widehat{40^o}\simeq25,0268\left(cm\right)\)

b) Ta có: \(BC=\dfrac{AC}{\sin\widehat{C}}=\dfrac{21}{\sin\widehat{40^o}}\simeq32,6702\left(cm\right)\)

c) Vì ΔABCΔABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^o\)

Suy ra: \(\widehat{B}=90^o-\widehat{C}=90^o-40^o=50^o\)

Vì BD là phân giác của B nên:

\(\widehat{ABD}=\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}.50^o=25^o\)

Trong tam giác vuông ABD, ta có:

\(BD=\dfrac{AB}{\cos\widehat{ABD}}=\dfrac{21}{\cos25^o}\simeq23,1709\left(cm\right)\)

20 tháng 10 2017

mn giúp em làm ý e vs ạ,thanks mn nhiều ^^

17 tháng 10 2021

Câu 1:

\(\sin\widehat{B}=\dfrac{12}{13}\)

\(\cos\widehat{B}=\dfrac{5}{13}\)

\(\tan\widehat{B}=\dfrac{12}{5}\)

\(\cot\widehat{B}=\dfrac{5}{12}\)

14 tháng 9

Bước 1: Nhắc lại dãy Fibonacci

Dãy Fibonacci \(F_{n}\) được định nghĩa:

\(F_{1} = 1 , F_{2} = 1 , F_{n} = F_{n - 1} + F_{n - 2} \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; n \geq 3\)

Ta cần tìm n sao cho \(F_{n} \equiv 0 \left(\right. m o d 17 \left.\right)\).


Bước 2: Tính các số Fibonacci modulo 17

Tính tuần tự để tìm \(F_{n} m o d \textrm{ } \textrm{ } 17\):

n

F_n

F_n mod 17

1

1

1

2

1

1

3

2

2

4

3

3

5

5

5

6

8

8

7

13

13

8

21

4

9

34

0

✅ Tại \(n = 9\), \(F_{9} = 34\) chia hết cho 17.


✅ Kết luận

Số Fibonacci đầu tiên chia hết cho 17 là số thứ 9 trong dãy.