
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A=(2+22)+(23+24)+...+(22009+22010)
A=2(1+2)+23(1+2)+...+22009(1+2)
A=2.3+23.3+...+22009.3
A=3(2+23+...+22009) chia hết cho 3
\(A=2^1+2^2+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=2.3+2^3.3+2^5.3+...+2^{2009}.3\)
\(A=3.\left(2+2^3+2^5+...+2^{2009}\right)\)\(⋮\)\(3\)
\(\Rightarrow A⋮3\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+4\right)+2^4\left(1+2+4\right)+2^7\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)
\(A=2.7+2^4.7+2^7.7+...+2^{2008}.7\)
\(A=7.\left(2+2^4+2^7+...+2^{2008}\right)\)\(⋮\)\(7\)
\(\Rightarrow A⋮7\)
\(B=3^1+3^2+...+3^{2010}\)
\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(B=3.4+3.3^3+3.3^5+...+3^{2009}.4\)
\(B=4.\left(3+3^3+3^5+...+3^{2009}\right)\)\(⋮\)\(4\)
\(\Rightarrow B⋮4\)
\(B=3^1+3^2+...+3^{2010}\)
\(B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(B=3.13+3^4.13+3^7.13+...+3^{2008}.13\)
\(B=13.\left(3+3^4+3^7+...+3^{2008}\right)\)\(⋮\)\(13\)
\(\Rightarrow B⋮13\)

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011

\(a,3+3^2+....+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+.....+\left(3^{2009}+3^{2010}\right)\)
\(=3.4+3^3.4+.....+3^{2009}.4\)
\(=4.\left(3+3^3+.....+3^{2009}\right)\)
\(\Rightarrow4.\left(3+3^3+....+3^{2009}\right)⋮4_{\left(1\right)}\)
\(3+3^2+...+3^{2010}\)
\(=\left(3+3^2+3^3\right)+.....+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3.13+....+3^{2008}.13\)
\(=13.\left(3+....+3^{2008}\right)\)
\(\Rightarrow3.\left(3+....+3^{2008}\right)⋮13_{\left(2\right)}\)
\(3+3^2+....+3^{2010}⋮3\) ( thấy rõ )
Từ (1) và (2) => \(3+3^2+...+3^{2010}⋮4;13\)
\(b,5+5^2+...+5^{2010}\)
\(=\left(5+5^2\right)+....+\left(5^{2009}+5^{2010}\right)\)
\(=5.6+....+6.5^{2009}\)
\(=6.\left(5+.....+5^{2009}\right)\)
\(\Rightarrow6.\left(5+....+5^{2009}\right)⋮6_{\left(1\right)}\)
\(5+5^2+...+5^{2010}\)
\(=\left(5+5^2+5^3\right)+.....+\left(5^{2008}+5^{2009}+5^{2010}\right)\)
\(=5.31+.....+31.5^{2008}\)
\(=31.\left(5+....+5^{2008}\right)\)
\(\Rightarrow31.\left(5+...+5^{2008}\right)⋮31_{\left(2\right)}\)
Từ (1) và (2) => \(5+5^2+....+5^{2010}⋮6;31\)

a,Ta co:\(A=\frac{2005^{2005}+1}{2005^{2006}+1}<\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}\)
\(=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}\) =B Vay A<B
b,lam tuong tu nhu y a

Ta thấy mẫu số có : 2010 chữ số 1
2009 chữ số 2
....................
1 chữ số 2010
Vậy nên mẫu số có thể viết thành : 2010.1+2009.2+....................+1.2010
Vậy phân số trên bằng 1
Xét mẫu số :(1+2+3+..................+2010)+(1+2+3+..................+2009)+(1+2)+1
Ta thấy trong mẫu trên :Có 2010 chữ số 1;2009 chữ số 2;2008 chữ số 3;........................;1 chữ số 2010
Vậy mẫu số có thể viết thành : 2010x1+2009x2+2008x3+.....................+1x2010=1x2010+2x2009+3x2008+.............................+2010x1
Vậy phân số trên bằng 1
giờ thì còn lại gì ngoài nhung nhớ