K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8

giờ thì còn lại gì ngoài nhung nhớ


A=(2+22)+(23+24)+...+(22009+22010

A=2(1+2)+23(1+2)+...+22009(1+2) 

A=2.3+23.3+...+22009.3

A=3(2+23+...+22009) chia hết cho 3 

2 tháng 12 2017

\(A=2^1+2^2+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=2.3+2^3.3+2^5.3+...+2^{2009}.3\)

\(A=3.\left(2+2^3+2^5+...+2^{2009}\right)\)\(⋮\)\(3\)

\(\Rightarrow A⋮3\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+4\right)+2^4\left(1+2+4\right)+2^7\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)

\(A=2.7+2^4.7+2^7.7+...+2^{2008}.7\)

\(A=7.\left(2+2^4+2^7+...+2^{2008}\right)\)\(⋮\)\(7\)

\(\Rightarrow A⋮7\)

\(B=3^1+3^2+...+3^{2010}\)

\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(B=3.4+3.3^3+3.3^5+...+3^{2009}.4\)

\(B=4.\left(3+3^3+3^5+...+3^{2009}\right)\)\(⋮\)\(4\)

\(\Rightarrow B⋮4\)

\(B=3^1+3^2+...+3^{2010}\)

\(B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)

\(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(B=3.13+3^4.13+3^7.13+...+3^{2008}.13\)

\(B=13.\left(3+3^4+3^7+...+3^{2008}\right)\)\(⋮\)\(13\)

\(\Rightarrow B⋮13\)

28 tháng 2 2018

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

13 tháng 3 2018

=1/2010

31 tháng 3 2017

Cho cách giải lun

15 tháng 10 2017

\(a,3+3^2+....+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+.....+\left(3^{2009}+3^{2010}\right)\)

\(=3.4+3^3.4+.....+3^{2009}.4\)

\(=4.\left(3+3^3+.....+3^{2009}\right)\)

\(\Rightarrow4.\left(3+3^3+....+3^{2009}\right)⋮4_{\left(1\right)}\)

\(3+3^2+...+3^{2010}\)

\(=\left(3+3^2+3^3\right)+.....+\left(3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3.13+....+3^{2008}.13\)

\(=13.\left(3+....+3^{2008}\right)\)

\(\Rightarrow3.\left(3+....+3^{2008}\right)⋮13_{\left(2\right)}\)

\(3+3^2+....+3^{2010}⋮3\) ( thấy rõ )

Từ (1) và (2) => \(3+3^2+...+3^{2010}⋮4;13\)

\(b,5+5^2+...+5^{2010}\)

\(=\left(5+5^2\right)+....+\left(5^{2009}+5^{2010}\right)\)

\(=5.6+....+6.5^{2009}\)

\(=6.\left(5+.....+5^{2009}\right)\)

\(\Rightarrow6.\left(5+....+5^{2009}\right)⋮6_{\left(1\right)}\)

\(5+5^2+...+5^{2010}\)

\(=\left(5+5^2+5^3\right)+.....+\left(5^{2008}+5^{2009}+5^{2010}\right)\)

\(=5.31+.....+31.5^{2008}\)

\(=31.\left(5+....+5^{2008}\right)\)

\(\Rightarrow31.\left(5+...+5^{2008}\right)⋮31_{\left(2\right)}\)

Từ (1) và (2) => \(5+5^2+....+5^{2010}⋮6;31\)

9 tháng 5 2016

toàn bài dễ nhưng dài quá

9 tháng 5 2016

nhưng nhìu quá bạn ơi, 3 **** thế này là quá ít, làm mệt mà bạn k có 3 thì bõ j

9 tháng 1 2016

ai làm được cho 10 tick

9 tháng 1 2016

a,Ta co:\(A=\frac{2005^{2005}+1}{2005^{2006}+1}<\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}\)

                 \(=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}\) =B                                                                                        Vay A<B    

b,lam tuong tu nhu y a

 

             

             

28 tháng 10 2019

a)\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)

\(A=\frac{1.2.3...19}{2.3.4...20}\)

\(A=\frac{1}{20}\)

1 tháng 5 2018

Ta thấy mẫu số có : 2010 chữ số 1

                                 2009 chữ số 2

                                   ....................

                                 1 chữ số 2010

Vậy nên mẫu số có thể viết thành : 2010.1+2009.2+....................+1.2010

Vậy phân số trên bằng 1

1 tháng 5 2018

Xét mẫu số :(1+2+3+..................+2010)+(1+2+3+..................+2009)+(1+2)+1

Ta thấy trong mẫu trên :Có 2010 chữ số 1;2009 chữ số 2;2008 chữ số 3;........................;1 chữ số 2010

Vậy mẫu số có thể viết thành : 2010x1+2009x2+2008x3+.....................+1x2010=1x2010+2x2009+3x2008+.............................+2010x1

  Vậy phân số trên bằng 1