Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm của (P) và (d) là :
\(x^2=2\left(m+3\right)x-m^2-3.\)
\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)
\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 ; x2 thì phương trình (1) có hai nghiệm phân biệt x1 x2.
\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)
Theo vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)
Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.
\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)
\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)
\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)
\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)
Vậy \(m=5\).

Pt hoành độ giao điểm: \(x^2-mx-m-1=0\)
\(a-b+c=1+m-m-1=0\) nên pt có 2 nghiệm:
\(\left\{{}\begin{matrix}x_1=-1\\x_2=m+1\end{matrix}\right.\) để 2 nghiệm pb \(\Rightarrow-1\ne m+1\Rightarrow m\ne-2\)
\(\Rightarrow\left\{{}\begin{matrix}y_1=x_1^2=1\\y_2=x_2^2=m^2+2m+1\end{matrix}\right.\)
\(y_1+y_2>5\Leftrightarrow m^2+2m+2>5\)
\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)
1.
Đặt \(\left(x+1\right)^2=t\ge0\) ta được:
\(t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
2.
Phương trình hoành độ giao điểm:
\(-\dfrac{2}{3}x^2=mx-1\Leftrightarrow2x^2+3mx-3=0\) (1)
Do \(ac=-6< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3m}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)
\(x_1+x_2=-5\Leftrightarrow-\dfrac{3m}{2}=-5\)
\(\Leftrightarrow m=\dfrac{10}{3}\)