K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

a. Hình vẽ ( 1 điểm)

Do (MIN) là góc ngoài của tam giác MIH nên

∠(MIN) = ∠(QMH) + ∠(MHI) ( 1 điểm)

⇒∠(QMH) = ∠(MIN) - ∠(MHI) = 120o - 90o = 30o ( 1 điểm)

Trong tam giác MPQ có ∠(MPQ) + ∠(MQP) + ∠(PMQ) = 180o

 

Nên ∠(MPQ) = 180o - 30o - 90o = 60o ( 1 điểm)

11 tháng 9 2017

a. Hình vẽ ( 1 điểm)

Do (MIN) là góc ngoài của tam giác MIH nên

∠(MIN) = ∠(QMH) + ∠(MHI) ( 1 điểm)

⇒∠(QMH) = ∠(MIN) - ∠(MHI) = 120o - 90o = 30o ( 1 điểm)

Trong tam giác MPQ có ∠(MPQ) + ∠(MQP) + ∠(PMQ) = 180o

 

Nên ∠(MPQ) = 180o - 30o - 90o = 60o ( 1 điểm)

18 tháng 12 2016

Ta có hình vẽ sau:

 

M P Q N I A R

a/ Xét ΔAMQ và ΔANP có:

AM = AN (gt)

\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)

AQ = AP (gt)

=> ΔAMQ = ΔANP (c.g.c) (đpcm)

b/ Vì ΔAMQ = ANP (ý a)

=> \(\widehat{QMA}=\widehat{PNA}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> MQ // PN (đpcm)

c/+) Xét ΔAMI và ΔANR có:

\(\widehat{MAI}=\widehat{NAR}\) (đối đỉnh)

AM = AN(gt)

\(\widehat{AMI}=\widehat{RNA}\) (so le trong do MQ // PN (ý b))

=> ΔAMI = ΔANR (g.c.g)

=> MI = NR (1)

+) CM tương tự ta có:

ΔAQI = ΔAPR (g.c.g)

=> QI = PR (2)

Từ (1); (2) và I là trung điểm của MQ

=> RP = RN (đpcm)

18 tháng 12 2016

giúp mình với!!!!!!!!!
 

25 tháng 4 2017

Mình sẽ cho người nào trả lời nhanh nhất

20 tháng 10 2016

Hỏi đáp Toán

a) Ta có: \(\widehat{IOK}=\widehat{BOC}-\widehat{BOI}-\widehat{KOC}=\widehat{BOC}-60^o\)

\(\widehat{BOC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-\left(\frac{\widehat{B}}{2}+\frac{\widehat{C}}{2}\right)=180^o-\frac{180^o-\widehat{A}}{2}=180^o-30^o=150^o\)

\(\Rightarrow\widehat{IOK}=150^o-60^o=90^o\Rightarrow OI\perp OK\)

b) Ta có: \(\widehat{BOE}=\widehat{COD}=180^o-30^o-90^o-30^o=30^o\)

Xét \(\Delta BEO;\Delta BIO\); có:

\(\widehat{B_1}=\widehat{B_2}\left(gt\right);\) Chung BO \(;\widehat{IOB}=\widehat{EOB}=30^o\)

=> \(\Rightarrow\Delta BEO=\Delta BIO\left(g.c.g\right)\Rightarrow BE=BI.\)

Tương tự thì KC=DC

Mà BC>BI+KC => BE > BE+DC

 

8 tháng 11 2017

abc = 122222222222222222222

\(\widehat{MBA}=90^0-55^0=35^0\)

\(\widehat{MAB}=90^0-67^0=23^0\)

Do đó: \(\widehat{AMB}=122^0\)

10 tháng 1 2018

Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

20 giờ trước (19:03)

ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ABC}=90^0-40^0=50^0\)

BD là phân giác của góc ABD

=>\(\hat{ABD}=\hat{DBC}=\frac12\cdot\hat{ABC}=\frac12\cdot50^0=25^0\)

Ta có: ΔBHA vuông tại H

=>\(\hat{HAB}+\hat{HBA}=90^0\)

=>\(\hat{HAB}=90^0-50^0=40^0\)

ΔBDA vuông tại A

=>\(\hat{ABD}+\hat{ADB}=90^0\)

=>\(\hat{ADB}=90^0-25^0=65^0\)

Vì B,I,D thẳng hàng nên \(\hat{BID}=180^0\)