
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
=\(\frac{x-4}{x-2}\)
b. Để A >0 thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)
Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)
c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)
Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0,1,3,4\right\}\)
Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)
Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)
Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)

theo đề ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\cdot\left(xy+yz+zx\right)=0\)
\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\left(1\right)\)
ta co: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
mà x + y + z = 0
\(\Rightarrow x^3+y^3+z^3-3xyz=0\Rightarrow x^3+y^3+z^3=3xyz\left(2\right)\)
a. VT = \(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+x^2z^2\right)\)
ta có: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)+2xyz\cdot\left(x+y+z\right)\)
vì x+y+z=0 nên: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)\)
từ (1) ta có: \(\left(x^2+y^2+z^2\right)^2=\left\lbrack-2\left(xy+yz+zx\right)^{}\right\rbrack^2\) (*)
\(=4\cdot\left(xy+yz+zx\right)^2=4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
ta có: \(4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
mà: \(2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4\)
thay vào (*) ta được:
\(\left(x^2+y^2+z^2\right)^2=\left(x^4+y^4+z^4\right)+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(=x^4+y^4+z^4+x^4+y^4+z^4=2\cdot\left(x^4+y^4+z^4\right)=VP\)
⇒ đpcm
b. \(VT=5\cdot\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)\)
\(=5\cdot\left(3xyz\right)\left(x^2+y^2+z^2\right)\)
\(=15xyz\cdot\left(x^2+y^2+z^2\right)\) (3)
\(x+y+z=0\Rightarrow x+y=-z\)
\(x^5+y^5+z^5=x^5+y^5+\left\lbrack-\left(x+y\right)\right\rbrack^5=x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5y^4+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left\lbrack x^3+y^3+2xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left\lbrack\left(x+y\right)^3-3xy\left(x+Y\right)+2xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left\lbrack\left(x+Y\right)^3-xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left(x+Y\right)\left\lbrack\left(x+y\right)^2-xy\right\rbrack\)
vì x+y=-z nên ta có:
\(x^5+y^5+z^5=-5xy\left(-z\right)\left\lbrack\left(-z\right)^2-xy\right\rbrack=5xyz\left(x^2-zy\right)\)
mặt khác \(x+y=-z\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)
\(x^2+y^2+z^2=x^2+y^2+\left(x+y\right)^2\)
\(=x^2+y^2+x^2+2xy+y^2=2\cdot\left(x^2+xy+y^2\right)\)
\(z^2-xy=\left(x+y\right)^2-xy=x^2+2xy+y^2-xy=x^2+xy+y^2\)
vậy \(x^5+y^5+z^5=5xyz\cdot\left(x^2+xy+y^2\right)=\frac52xyz\left(x^2+y^2+z^2\right)\)
\(\Rightarrow2\cdot\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
⇒ \(6\cdot\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)\) (4)
từ (3) và (4) ⇒ VT = VP

\(x+y+z=0\rArr\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\rArr x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\rArr x^2+y^2+z^2=0\) (do \(xy+yz+xz=0\) )
\(\rArr x=y=z=0\)
Do đó:
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}=-1+0+1=0\)

đk: x khác -3; 2
b)\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
c) A=3/4 <=> \(\frac{x-4}{x-2}=\frac{3}{4}\Leftrightarrow4x-16=3x-6\) tự giải pt này ra x nha
d) \(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)=> A thuộc Z <=> 2/x-2 thuộc Z( 1 thuộc Z rồi) => x-2 thuộc Ư(2) <=> x-2 thuộc (+-1;+-2)
x-2 | 1 | -1 | 2 | -2 |
x | 3(t/m) | 1(t/m) | 4(t/m) | 0(t/m) |
=> Vậy..
e) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=+-3\)thay lần lượt vào A rồi tính nha

a) Dùng trong công cụ
để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.
b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ điểm C sao cho BC = 4 cm.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm B, nhập bán kính bằng 4.
Chọn công cụ → Chọn
→ Chọn điểm C bất kỳ nằm trên đường tròn tâm B.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm C, nhập bán kính bằng 4.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột đường tròn tâm A và đường tròn C.
Chọn công cụ để nối B với C, C với D, D với A.
Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.

a) Có A(–3; 4), B(–2; –2), C(1; –3), D(3; 0).
b) Ta có các điểm E(0; –2) và F(2; –1) được biểu diễn như sau:

Điểm \(O\) là gốc tọa độ nên \(O\left( {0;0} \right)\)
Từ điểm \(E\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại – 3 và cắt \(Oy\) tại 4 nên \(E\left( { - 3;4} \right)\).
Từ điểm \(F\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại 3 và cắt \(Oy\) tại – 5 nên \(E\left( {3; - 5} \right)\).

a) Dùng trong công cụ
để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:
Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm A, nhập bán kính bằng 3.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm B, nhập bán kính bằng 3.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.
Chọn công cụ → Chọn
→ Chọn điểm A → Chọn điểm C.
Chọn công cụ → Chọn
→ Chọn điểm B → Chọn điểm C.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm A, nhập bán kính bằng 6.
Chọn công cụ → Chọn
→ Nháy chuột lần lượt vào các điểm A, B.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.
Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột vào đường thẳng vừa vẽ.
Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.
Đk: \(x\ne1;x\ne0\)
a) \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right]\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}\)
\(=\dfrac{x^2}{x-1}\)
b) \(E>1\Leftrightarrow\dfrac{x^2}{x-1}>1\) \(\Leftrightarrow\dfrac{x^2-x+1}{x-1}>0\) \(\Leftrightarrow x-1>0\)
( do \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\) )
\(\Leftrightarrow x>1\)
Vậy để E>1 thì x>1
c) \(E=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=\dfrac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\dfrac{1}{x-1}\)
\(E\in Z\Leftrightarrow x+1+\dfrac{1}{x-1}\in Z\) mà \(x\in Z\)
\(\Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Leftrightarrow x=0\left(ktm\right);x=2\left(tm\right)\)
Vậy \(x=2\) thì \(E\in Z\).