Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
- Với x-2=-(x-2)
=>x-2=-x+2
=>x=2
- Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
- Với 2x+3=-(5x-1)
=>2x+3=-5x+1
=>x=-2/7 (loại)
- Với 2x+3=5x-1
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017

a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

\(G=\left|x-4\right|+\left|x+6\right|\)
\(G=\left|x-4\right|+\left|-\left(x+6\right)\right|\)
\(G=\left|x-4\right|+\left|-6-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(G=\left|x-4\right|+\left|-6-x\right|\ge\left|x-4-6-x\right|=\left|-10\right|=10\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(x-4\right)\left(-6-x\right)\ge0\)
Xét hai trường hợp :
1/ \(\hept{\begin{cases}x-4\ge0\\-6-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\-x\ge6\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\x\le-6\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}x-4\le0\\-6-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le4\\-x\le6\end{cases}\Rightarrow}\hept{\begin{cases}x\le4\\x\ge-6\end{cases}}\Rightarrow-6\le x\le4\)
=> GMin = 10 , đạt được khi \(-6\le x\le4\)
\(G=|x-4|+|x+6|=|-\left(x-4\right)|+|x+6|\)
\(=|-x+4|+|x+6|=|4-x|+|x+6|\)
Sử dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)ta có :
\(|4-x|+|x+6|\ge|4-x+x+6|=|10|=10\)
Dấu = xảy ra \(\Leftrightarrow\left(4-x\right)\left(x+6\right)\ge0\Leftrightarrow-6\le x\le4\)

ta có với mọi x: /x+5/ lớn hơn hoặc bằng 0
suy ra ; -/x+5/ bé hơn hoặc bằng 0
suy ra ; 3.5-/x+5/ bé hơn hoặc bằng 3.5 =15
suy ra 1/ 15-/x+5/ lớn hơn hoặc bằng 1/15
Dấu bằng xảy ra khi và chỉ khi /x+5/=0
suy ra x=-5
vậy E min =1/15 khi và chỉ khi x=-5
Sửa đề: \(A=\left|x+\frac13\right|-4\)
Ta có: \(\left|x+\frac13\right|\ge0\forall x\)
=>\(\left|x+\frac13\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi \(x+\frac13=0\)
=>\(x=-\frac13\)