K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

f(1) = (3.18 - 2.16 + 15 + 2.14 - 12 +1 )5 = a0 + a1.1 + a2.12 +....+ a40.140

<=> 1024 = a0 + a1 + a2 + .... + a40

15 tháng 12 2016

Bài này không trình bày đc nha bạn , bài này chỉ suy luận thôi , thấy cái mũ 5 kia thì bạn thử các số tự nhiên có mũ 5 nha. đó là số 4 mũ 5 = 1024

Ta có: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x^2+2xy+y^2\right)+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\begin{cases}x+y=0\\ x-1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=-1\end{cases}\)

Khi x=1;y=-1 thì ta có:

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}\)

=1

Bài 2:

a: ĐKXĐ: x∉{2;-2}

b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)

c: Thay x=-5 vào A, ta được:

\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)

d: Để A nguyên thì 3x⋮x-2

=>3x-6+6⋮x-2

=>6⋮x-2

=>x-2∈{1;-1;2;-2;3;-3;6-6}

=>x∈{1;2;4;0;5;-1;8;-4}

Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}

Bài 1:

a: \(A=x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)

b: \(B=x^2-y^2+8x-8y\)

=(x-y)(x+y)+8(x-y)

=(x-y)(x+y+8)

c: \(C=x^2+4x-5\)

\(=x^2+5x-x-5\)

=x(x+5)-(x+5)

=(x+5)(x-1)

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

S
11 tháng 8

10) đkxđ: \(x\ne\pm3\)

\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)

\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)

11) đkxđ: \(x\ne-1\)

\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)

\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)

13) đkxđ: \(x\ne\pm\frac32\)

\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)

\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)

Đề :cộng phân thức.giúp mình câu 10, 11, 12 nhé