K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Giải:

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)

\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=9.\left(1-\dfrac{1}{100}\right)\)

\(A=9.\dfrac{99}{100}\)

\(A=\dfrac{891}{100}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Tổng \({S_n}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên ta có:

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{1\left( {1 - {{\left( {\frac{1}{3}} \right)}^n}} \right)}}{{1 - \frac{1}{3}}} = \frac{{1 - {{\left( {\frac{1}{3}} \right)}^n}}}{{\frac{2}{3}}} = \frac{3}{2}\left( {1 - \frac{1}{{{3^n}}}} \right) = \frac{3}{2} - \frac{1}{{{{2.3}^{n - 1}}}}\)

b) Ta có:

\(\begin{array}{l}{S_n} = 9 + 99 + 999 + ... + \underbrace {99...9}_{n\,\,chu\,\,so\,\,9} = \left( {10 - 1} \right) + \left( {100 - 1} \right) + \left( {1000 - 1} \right) + ... + \left( {\underbrace {100...0}_{n\,\,chu\,\,so\,\,0} - 1} \right)\\ = \left( {10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}} \right) - n\end{array}\)

Tổng \(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 10\) và công bội \(q = 10\) nên ta có:

\(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,s\^o \,\,0} = \frac{{10\left( {1 - {{10}^n}} \right)}}{{1 - 10}} = \frac{{10 - {{10}^{n + 1}}}}{{ - 9}} = \frac{{{{10}^{n + 1}} - 10}}{9}\)

Vậy \({S_n} = \frac{{{{10}^{n + 1}} - 10}}{9} - n = \frac{{{{10}^{n + 1}} - 10 - 9n}}{9}\)

25 tháng 6 2017

a) \(100+98+96+...+2-97-95-93-...-3\)

= \(100+98+\left(96-97\right)+\left(94-95\right)+...+\left(2-3\right)\)

= \(100+98-95\) = \(103\)

b) \(2-4-6+8+10-12-14+16+...-102+104\)

= \(\left(2-4\right)+\left(-6+8\right)+\left(10-12\right)+\left(-14+16\right)+...+\left(-102+104\right)\)

= \(-2+2-2+2-2+...+2\) = \(0\)

c) \(1+2-3-4+5+6-7-8+9+10-11-12+...-111-112+113+114\)

= \(\left(1+2\right)-\left(3+4\right)+\left(5+6\right)-\left(7+8\right)+...\left(113+114\right)\)

= \(3-7+11-15+19-23+...+219-223+227\)

= \(\left(3-7\right)+\left(11-15\right)+\left(19-23\right)+...+\left(219-223\right)+227\)

= \(-4-4-4-4-...-4+227\)

= \(54\left(-4\right)+227\) = \(-216+227\) = \(11\)

11 giờ trước (20:29)

Tổng của dãy số là

S=10(10100−1)/9 -100

nè bạn

tick cho mik nha

11 giờ trước (20:30)

tui thi hsg toán làm dạng này rùi

NV
20 tháng 7 2021

a. Đề bài sai, phương trình không giải được

b.

ĐKXĐ: \(x\ge-\dfrac{2}{3}\)

\(\left(2x+10\right)\left(\dfrac{1-\left(3+2x\right)}{1+\sqrt{3+2x}}\right)^2=4\left(x+1\right)^2\)

\(\Leftrightarrow\dfrac{\left(2x+10\right)4.\left(x+1\right)^2}{\left(1+\sqrt{3+2x}\right)^2}=4\left(x+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+1\right)^2=0\Rightarrow x=-1\\2x+10=\left(1+\sqrt{3+2x}\right)^2\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow2x+10=2x+4+2\sqrt{2x+3}\)

\(\Leftrightarrow\sqrt{2x+3}=3\)

\(\Leftrightarrow x=3\)

20 tháng 7 2021

cho em hỏi , em thấy câu a có nghiệm mà

a: \(2^{2x-2}>=8\)

=>\(2^{2x-2}>=2^3\)

=>2x-2>=3

=>2x>=5

=>\(x>=\dfrac{5}{2}\)

b: \(4^{2x+2}< =16\)

=>\(4^{2x+2}< =4^2\)

=>2x+2<=2

=>2x<=0

=>x<=0

c: \(5^{x-9}>5^2\)

=>x-9>2

=>x>11

d: \(9^{x+2}< 9\)

=>\(9^{x+2}< 9^1\)

=>x+2<1

=>x<-1

e: \(9^{x-1}>9^{x^2-x-9}\)

=>\(x-1>x^2-x-9\)

=>\(x^2-x-9-x+1< 0\)

=>\(x^2-2x-8< 0\)

=>(x-4)(x+2)<0

=>-2<x<4

25 tháng 2 2017

=4

25 tháng 2 2017

bằng 4 nhavui