\(^{A=3+3^2+...+3^{2019}}\)    

a) Tính A

b) Tìm chữ số tận...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

a) \(A=3+3^2+...+3^{2019}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2020}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3^2+3^3+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)

\(2A=3^{2020}-3\)

\(A=\frac{3^{2020}-3}{2}\)

b) Ta có : \(2A=3^{2020}-3\)

\(=3^{505.4}-3\)

\(=\left(3^4\right)^{505}-3\)

\(=81^{505}-3\)

\(=\overline{....1}-3\)

\(=...8\)

\(\Rightarrow A=...4\)

Vậy chữ số tận cùng của A là 4