
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.





\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2024}}\\ =>2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2023}}\\ =>2A-A=A=1-\dfrac{1}{2^{2024}}=\dfrac{2^{2024}-1}{2^{2024}}\)

2023 mũ 2024+2024 mũ 2025+2025 mũ 2026
Xét 2023 mũ 2024
\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)
Ta có:\(^{2023^4}\)tận cùng là 1
=>2023 mũ 4 tất cả mũ 501 tận cùng là 1
Xét 2024 mũ 2025
2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024
Ta có:2024 mũ 2 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4
Xét 2025 mũ 2026
2025 mũ 2026
5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5
=>2025 mũ 2026 tận cùng là 5
Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10
=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10
Đây là bài áp dụng tính chất tìm chữ số tận cùng
Chúc bn học tốt
\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)
-> chia hết cho 5
Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2
Do (2,5) = 1 nên chia hết cho 10

2100 và 20249
ta có: 20249 = 29.10 = 290
=> 100 > 90 => 2100 > 290 => 2100 > 20249
Ko chắc nx :v

A>1√2+√3+1√4+√5+1√6+√7+...+1√2024+√2025A>12+3+14+5+16+7+...+12024+2025
⇒2A>1√1+√2+1√2+√3+1√3+√4+1√4+√5+...+1√2024+√2025⇒2A>11+2+12+3+13+4+14+5+...+12024+2025
⇒2A>√2−√1+√3−√2+√4−√3+...+√2025−√2024⇒2A>2−1+3−2+4−3+...+2025−2024
⇒2A>√2025−√1=44⇒2A>2025−1=44
⇒A>22⇒A>22
Số số hạng của dãy là: \(\frac{2024-2}{2}+1=\frac{2022}{2}+1=1011+1=1012\) (số)
Tổng của dãy số là:
\(A=\left(2024+2\right)\cdot\frac{1012}{2}=2026\cdot\frac{1012}{2}=1012\cdot1013\)
=1025156
sồ số hạng của tổng là:
(2024-2):2+1=1011(số hạng)
tổng A là:
(2024+2)*1011:2=1.025.156
cái này''*'' là dấu nhân nha,trên máy mình chỉ có dấu nhân như vầy thôi.thông cảm cho mình