
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


2025 x 2026 - 2026 - 1024 x 2 x 2013
= 2026 x (2025 - 1) - 2048 x 2013
= 2026 x 2024 - 2048 x 2013
= (2048 - 22) x 2024 - 2048 x 2013
= 2048 x 2024 - 22 x 2024 - 2048 x 2013
= 2048 x (2024 - 2013) - 22 x 2024
= 2048 x 11 - 22 x 2024
= 2048 x 11 - 2 x 11 x 2024
= 11 x (2048 - 2 x 2024)
= 11 x (2048 - 4048)
= 11 x (-2000)
= -22000
= 2026 x (2025 - 1) - 2048 x 2013
= 2026 * 2024 - 2048 * 2013
= 4100624 - 4122624
= -22000

\(x+2x+3x+4x+\cdots+2025x=2025\cdot2026\)
\(x\cdot\left(1+2+3+\ldots+2025\right)=2025\cdot2026\)
\(x\cdot\frac{2025\cdot\left(2025+1\right)}{2}=2025\cdot2026\)
\(x=2025\cdot2026:\frac{2025\cdot2026}{2}\)
\(x=2\)

2023 mũ 2024+2024 mũ 2025+2025 mũ 2026
Xét 2023 mũ 2024
\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)
Ta có:\(^{2023^4}\)tận cùng là 1
=>2023 mũ 4 tất cả mũ 501 tận cùng là 1
Xét 2024 mũ 2025
2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024
Ta có:2024 mũ 2 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4
Xét 2025 mũ 2026
2025 mũ 2026
5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5
=>2025 mũ 2026 tận cùng là 5
Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10
=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10
Đây là bài áp dụng tính chất tìm chữ số tận cùng
Chúc bn học tốt
\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)
-> chia hết cho 5
Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2
Do (2,5) = 1 nên chia hết cho 10

ta nhận xét rằng mỗi số hạng trong tổng \(M\) đều là số dương. Do đó, \(M > 0\).
Áp dụng bất đẳng thức này cho từng số hạng của \(M\), ta có: \(M = \sum_{k = 1}^{2025} \frac{k}{\left(\right. k + 1 \left.\right)^{3}} < \sum_{k = 1}^{2025} \frac{1}{\left(\right. k + 1 \left.\right)^{2}}\)
Đặt \(j = k + 1\). Khi \(k = 1\) thì \(j = 2\), và khi \(k = 2025\) thì \(j = 2026\). Do đó, \(\sum_{k = 1}^{2025} \frac{1}{\left(\right. k + 1 \left.\right)^{2}} = \sum_{j = 2}^{2026} \frac{1}{j^{2}}\).
Giá trị của \(\pi \approx 3.14159\), nên \(\pi^{2} \approx 9.8696\). \(\frac{\pi^{2}}{6} \approx \frac{9.8696}{6} \approx 1.6449\). Vậy \(\sum_{j = 2}^{2026} \frac{1}{j^{2}} < 1.6449 - 1 = 0.6449\).
Do đó, \(M < 0.6449\).
\(=\frac{1}{2^{3}}+\frac{2}{3^{3}}+\frac{3}{4^{3}}+...+\frac{2025}{202 6^{3}}\) \(M > \frac{1}{2^{3}} = \frac{1}{8} = 0.125\)
Ta có \(0.125 < M < 0.6449\). Vì \(M\) nằm trong khoảng \(\left(\right. 0.125 , 0.6449 \left.\right)\), nên \(M\) không thể là một số tự nhiên
Do đó, giá trị của \(M\) không phải là số tự nhiên.
đây mik cx ko chắc chắn lắm

x càng lớn thì \(\left|x-2013\right|\) càng lớn \(\Rightarrow2026\left|x-2013\right|+2\) càng lớn
=> A không có max
Mình nghĩ đề là tìm giá trị nhỏ nhất
\(\left|x-2013\right|\ge0\Rightarrow2026\left|x-2013\right|\ge0\Rightarrow2026\left|x-2013\right|+2\ge2\)
Dấu "=" xảy ra tại x=2013
Vậy A có GTNN là 2 khi x=2013

\(\frac{22}{45}\)< \(\frac{51}{101}\)
\(\frac{23}{48}\)< \(\frac{47}{92}\)
\(\frac{34}{43}\)< \(\frac{35}{42}\)
b) 42 * 75 + 58 * 43 + 45 * 42 + 77 * 48
= (42 * 75 + 45 * 42) + 58 * 43 + 77 * 48
= 42 * (75 + 45) + 2494 + 3696
= 42 * 120 + 6120
= 5040 + 6120
= 11160
a) \(2025\cdot2026-2026-1024\cdot2\cdot2013\)
\(=2025\cdot2026-2026-1024\cdot2026\)
\(=2026\cdot\left(2025-1-1024\right)\)
\(=2025\cdot1000=2025000\)
.