
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)92 : 33 = (32)2 : 33 = 34 : 33 = 3.
b) 52 . 252 = 52 . (52)2 = 52 . 54 = 56.
c) \(\left(\frac{1}{3}\right)^2\) . \(\left(\frac{1}{9.3}\right)^2\) = \(\frac{1^2}{3^2}\). \(\frac{1^2}{27^2}\)= \(\frac{1}{9}\).\(\frac{1}{729}\)= \(\frac{1}{2511}\)

\(\dfrac{2022-1}{3^2\cdot3^2}\)
\(=\dfrac{2021}{3^{2+2}}\)
\(=\dfrac{2021}{3^4}\)
\(=\dfrac{2021}{81}\)
Bạn nên gõ đề đầy đủ và bằng công thức toán để mọi người hỗ trợ tốt hơn.


Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3+3^2-3^3+\cdots+3^{22}-3^{23}\right)\) ⋮3
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3\right)+3^3\left(1-3\right)+\cdots+3^{23}\left(1-3\right)\)
\(=3\cdot\left(-2\right)+3^3\cdot\left(-2\right)+\cdots+3^{23}\left(-2\right)\)
\(=-2\left(3+3^3+\cdots+3^{23}\right)\)
\(=-2\left\lbrack\left(3+3^3\right)+\left(3^5+3^7\right)+\cdots+\left(3^{21}+3^{23}\right)\right\rbrack\)
\(=-2\cdot\left\lbrack3\cdot\left(1+3^2\right)+3^5\left(1+3^2\right)+\cdots+3^{21}\left(1+3^2\right)\right\rbrack\)
\(=-2\cdot10\cdot\left(3+3^5+\cdots+3^{21}\right)=-20\cdot\left(3+3^5+\cdots+3^{21}\right)\) ⋮20
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+\cdots-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+\cdots+3^{22}\left(1-3+3^2\right)\)
\(=7\cdot\left(3-3^4+\cdots-3^{22}\right)\) ⋮7
Ta có: C⋮20
C⋮7
C⋮3
mà ƯCLN(20;3;7)=1
nên C⋮20*3*7
=>C⋮420

Đặt x/2 = y/3 = z/5 =k => x= 2k ; y=3k; z=5k
(thay vào => tìm ra k => thay k vào x=2k;y=..... để tính x,y,z)
Dặt x/2=y/3=z/5=k
suy ra x=2k y=3k z=5k
suy ra x.y.z=2k.3k.5k=30k^3
suy ra 30.k^3=120
suy ra k^3=4
roi ban tu lam tiep nha

\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{13}.3^{13}-2^{11}.3^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.2^{12}-2^{11}.2^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.\left(1+5\right)}{6^{12}-6^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.6}{6^{11}.\left(6-1\right)}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.2.3}{6^{11}.\left(6-1\right)}\)
\(\Leftrightarrow\frac{2^{13}.3^{11}}{6^{11}.5}\)
\(\Leftrightarrow\frac{2^{11}.3^{11}.2^2}{6^{11}.5}\)
\(\Leftrightarrow\frac{6^{11}.4}{6^{11}.5}\Leftrightarrow\frac{4}{5}\)
A=120:{60:[(3mux2 + 4mux2)-5]}
A=120:{60[(9+16)-5]}
A=120:{60[25-5]}
A=120:{60.20}
A=120:1200
A=0,1
ko cos mays tính à