
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Quy đồng bỏ mẫu rồi giai pt ta đc : \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b)\(x=1\)

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)
=>13/12x=13/12
hay x=1
b: \(\Leftrightarrow\dfrac{3x-11}{11}-\dfrac{x}{3}=\dfrac{3x-5}{7}-\dfrac{5x-3}{9}\)
\(\Leftrightarrow\dfrac{3}{11}x-1-\dfrac{1}{3}x=\dfrac{3}{7}x-\dfrac{5}{7}-\dfrac{5}{9}x+\dfrac{1}{3}\)
\(\Leftrightarrow x\cdot\dfrac{46}{693}=\dfrac{13}{21}\)
hay x=429/46

Bài 1:
\(a,3\left(x-11\right)-2\left(x+11\right)=2011\)
\(\Leftrightarrow3x-33-2x-22=2011\)
\(\Leftrightarrow x-55=2011\)
\(\Leftrightarrow x=2066\)
Vậy pt có nghiệm x = 2066
\(b,\left(x-1\right)\left(3x-7\right)=\left(x-1\right)\left(x+30\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3x-7\right)-\left(x-1\right)\left(x+30\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-7-x-30\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-37\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-37=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{37}{2}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{1;\dfrac{37}{2}\right\}\)
\(c,\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\) (1)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{0;-1\right\}\)
\(d,\left|2x-3\right|=x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x+1\\2x-3=-x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=1+3\\2x+x=-1+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{4;\dfrac{2}{3}\right\}\)
Bài 2:
\(a,2\left(x-1\right)< x+1\)
\(\Leftrightarrow2x-2< x+1\)
\(\Leftrightarrow2x-x< 1+2\)
\(\Leftrightarrow x< 3\)
Vậy bpt có nghiệm x < 3
b, Đề bài ko rõ
x-\(\dfrac{x+2}{3}\)nhỏ hơn hoặc bằng 3x+\(\dfrac{x}{2}+5\)

=>x^3-3x^2+3x-1-x(x^2+2x+1)=10x-5x^2-11x-22
=>x^3-3x^2+3x-1-x^3-2x^2-x=-5x^2-x-22
=>-5x^2+2x-1=-5x^2-x-22
=>2x-1=-x-22
=>3x=-21
=>x=-7

Bài 2:
\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}-\dfrac{x\left(x^3-1\right)}{x^2+x+1}\)
\(=x\left(x+1\right)-x\left(x-1\right)\)
=x^2+x-x^2+x
=2x

a) ĐKXĐ: \(x\notin\left\{\frac{1}{3};\frac{-11}{3}\right\}\)
Ta có: \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)
\(\Leftrightarrow\frac{2\left(1-3x\right)\left(3x+11\right)}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}=\frac{\left(3x+11\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}-\frac{3\left(1-3x\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}\)
\(\Leftrightarrow-18x^2-60x+22=9x^2+66x+121-3\left(1-6x+9x^2\right)\)
\(\Leftrightarrow-18x^2-60x+22-9x^2-66x-121+3\left(1-6x+9x^2\right)=0\)
\(\Leftrightarrow-27x^2-126x-99+3-18x+27x^2=0\)
\(\Leftrightarrow-144x-96=0\)
\(\Leftrightarrow-144x=96\)
hay \(x=\frac{-2}{3}\)(tm)
Vậy: \(x=\frac{-2}{3}\)