K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

\(A=2+2^2+2^3+2^4+....+2^{2017}\)

\(\Rightarrow2A=2^2+2^3+2^4+2^5+....+2^{2017}+2^{2018}\)

\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5+.....2^{2017}+2^{2018}\right)-\left(2+2^2+2^3+2^4+....+2^{2017}\right)\)

\(\Rightarrow A=2^{2018}-2\)

24 tháng 7 2017

còn câu B bn làm tương tự.

6 tháng 9 2020

Làm bài 1 thôi !! Mấy bài kia tương tự . Tìm nhân tử chung ra .

a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)

\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)

c) \(-16+\left(x-3\right)^2=\left(x-3+4\right)\left(x-3-4\right)=x\left(x-7\right)\)

d) \(64+16y+y^2=\left(y+8\right)\left(y+8\right)\)

19 tháng 8 2018

Bài 1:

a) \(x^2-10x+26+y^2+2y\)

\(=x^2-2.x.5+25+y^2+2y+1\)

\(=\left(x-5\right)^2+\left(y+1\right)^2\)

b) Sửa đề \(z^2-6z+5-t^2-4t\)

\(=z^2-2.z.3+9-4-t^2-4t\)

\(=\left(z-3\right)^2-\left(t^2+4t+4\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

c) \(\left(x+y-4\right)\left(x+y+4\right)\)

\(=\left(x+y\right)^2-4^2\)

d) \(a^2-b^2+c^2-2ac-d^2+2bd\)

\(=\left(a^2-2ac+c^2\right)-\left(b^2-2bd+d^2\right)\)

\(=\left(a-c\right)^2-\left(b-d\right)^2\)

e) \(\left(a-b-c\right)\left(a+b-c\right)\)

\(=\left(a-c-b\right)\left(a-c+b\right)\)

\(=\left(a-c\right)^2-b^2\)

f) \(4a^2+2b^2-4ab-2b+1\)

\(=\left(2a\right)^2-2.2a.b+b^2+b^2-2b+1\)

\(=\left(2a-b\right)^2+\left(b-1\right)^2\)

Bài 2:

a) Sửa đề \(4x^2-4xy+y^2\)

\(=\left(2x\right)^2-2.2x.y+y^2\)

\(=\left(2x-y\right)^2\)

b) \(y^2-6y+9\)

\(=y^2-2.y.3+3^2\)

\(=\left(y-3\right)^2\)

c) \(a^2+a+\dfrac{1}{4}\)

\(=a^2+2a.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)

\(=\left(a+\dfrac{1}{2}\right)^2\)

d) \(a^2-12a+36\)

\(=a^2-2.a.6+6^2\)

\(=\left(a-6\right)^2\)

i) \(x^2-xy+\dfrac{1}{4}y^2\)

\(=x^2-2.x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\)

\(=\left(x-\dfrac{1}{2}y\right)^2\)

e) \(9x^2-24x+16\)

\(=\left(3x\right)^2-2.3x.4+4^2\)

\(=\left(3x-4\right)^2\)

f) \(x^2-3x+\dfrac{9}{4}\)

\(=x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\)

\(=\left(x-\dfrac{3}{2}\right)^2\)

g) \(1-2xy^2+x^2y^4\)

\(=1-2xy^2+\left(xy^2\right)^2\)

\(=\left(1-xy^2\right)^2\)

h) \(\left(2a-b\right)^2+2\left(2a-b\right)+1\)

\(=\left(2a-b+1\right)^2\)

Bài 3:

a) \(A=\dfrac{1}{4}x^2-xy+y^2\)

\(A=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.y+y^2\)

\(A=\left(\dfrac{1}{2}x-y\right)^2\)

Thay x = 2012 và y = 1004 vào A ta được

\(A=\left(\dfrac{1}{2}.2012-1004\right)^2\)

\(A=\left(1006-1004\right)^2\)

\(A=2^2=4\)

b) \(B=9x^2-3xy+\dfrac{1}{4}y^2\)

\(B=\left(3x\right)^2-2.3x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\)

\(B=\left(3x-\dfrac{1}{2}y\right)^2\)

Thay x = 231 và y = 1384 vào B ta được

\(B=\left(3.231-\dfrac{1}{2}.1384\right)^2\)

\(B=\left(693-692\right)^2\)

\(B=1^2=1\)

19 tháng 8 2018

thank you bạn nha

15 tháng 7 2018

3) \(A=2017.2019=\left(2018+1\right)\left(2018-1\right)=2018^2-1\)

\(\Rightarrow A< B\)

15 tháng 7 2018

Bài 1:

a)  \(x^2+2y^2+2xy-2y+2=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y-1\right)^2+1=0\)

Ta thấy  \(VT>0\)

suy ra phương trình vô nghiệm

b)  \(x^2+y^2-4x+4=0\)

\(\Leftrightarrow\)\( \left(x-2\right)^2+y^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\y=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy...

Bài 2:

a)  \(8y^3-125x^3=\left(2y-5x\right)\left(4y^2+10xy+25y^2\right)\)

b)  \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)

c)  \(x^4-1=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

Bài 3:

\(A=2017.2019=\left(2018-1\right)\left(2018+1\right)=2018^2-1< 2018^2=B\)

Vậy  \(A< B\)

16 tháng 8 2016

\(\left(9x-1\right)^2-2\left(9x-1\right)\left(5x-1\right)+\left(5x-1\right)^2=\left(9x-1-5x+1\right)^2=\left(14x\right)^2=196x^2\)

16 tháng 8 2016

\(5^4.3^4-\left(15^4-1\right)=15^4-15^4+1=1\)

14 tháng 9 2019

a,       \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)

b,       \(y^2-13=\left(y-\sqrt{13}\right)\left(y+\sqrt{13}\right)\)

c,      \(\left(x^2-1\right)^2-\left(y+3\right)^2=\left(x^2-1-y-3\right)\left(x^2-1+y+3\right)\)

                                                          \(=\left(x^2-4-y\right)\left(x^2+2+y\right)\)

14 tháng 9 2019

d,     \(2x^4-4=2\left(x^4-2\right)\)

e,    \(\left(a^2-b^2\right)^2-\left(a^2+b^2\right)^2=\left(a^2-b^2-a^2-b^2\right)\left(a^2-b^2+a^2+b^2\right)\)

                                                               \(=-2b^2.2a^2=-4.a^2b^2\)

f,        \(a^6-b^6=\left(a^3\right)^2-\left(b^3\right)^2\)

                            \(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

16 tháng 6 2015

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu

10 tháng 4 2016

2)

a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400

b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

4)

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x

b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

a) \(x^2+2x+1\)

\(=\left(x+1\right)^2\)

b) \(x^2-6x+9\)

\(=\left(x-3\right)^2\)

c) \(x^2+4x+4\)

\(=\left(x+2\right)^2\)

d) \(x^3+9x^2+27x+27\)

\(=\left(x+3\right)^3\)

11 tháng 7 2017

a) \(x^2y^2-a^4b^6=\left(xy\right)^2-\left(a^2b^3\right)^2=\left(xy-a^2b^3\right).\left(xy+a^2b^3\right)\)

b) \(4x^2y^4-\left(3xy^2-1\right)^2=\left(2xy^2\right)^2-\left(3xy^2-1\right)^2\)\(\left(2xy^2-3xy^2+1\right).\left(2xy^2+3xy^2-1\right)\)

                                               =    \(\left(-xy^2+1\right).\left(5xy^2-1\right)\)