Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Làm bài 1 thôi !! Mấy bài kia tương tự . Tìm nhân tử chung ra .
a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)
b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)
\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)
c) \(-16+\left(x-3\right)^2=\left(x-3+4\right)\left(x-3-4\right)=x\left(x-7\right)\)
d) \(64+16y+y^2=\left(y+8\right)\left(y+8\right)\)

Bài 1:
a) \(x^2-10x+26+y^2+2y\)
\(=x^2-2.x.5+25+y^2+2y+1\)
\(=\left(x-5\right)^2+\left(y+1\right)^2\)
b) Sửa đề \(z^2-6z+5-t^2-4t\)
\(=z^2-2.z.3+9-4-t^2-4t\)
\(=\left(z-3\right)^2-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
c) \(\left(x+y-4\right)\left(x+y+4\right)\)
\(=\left(x+y\right)^2-4^2\)
d) \(a^2-b^2+c^2-2ac-d^2+2bd\)
\(=\left(a^2-2ac+c^2\right)-\left(b^2-2bd+d^2\right)\)
\(=\left(a-c\right)^2-\left(b-d\right)^2\)
e) \(\left(a-b-c\right)\left(a+b-c\right)\)
\(=\left(a-c-b\right)\left(a-c+b\right)\)
\(=\left(a-c\right)^2-b^2\)
f) \(4a^2+2b^2-4ab-2b+1\)
\(=\left(2a\right)^2-2.2a.b+b^2+b^2-2b+1\)
\(=\left(2a-b\right)^2+\left(b-1\right)^2\)
Bài 2:
a) Sửa đề \(4x^2-4xy+y^2\)
\(=\left(2x\right)^2-2.2x.y+y^2\)
\(=\left(2x-y\right)^2\)
b) \(y^2-6y+9\)
\(=y^2-2.y.3+3^2\)
\(=\left(y-3\right)^2\)
c) \(a^2+a+\dfrac{1}{4}\)
\(=a^2+2a.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)
\(=\left(a+\dfrac{1}{2}\right)^2\)
d) \(a^2-12a+36\)
\(=a^2-2.a.6+6^2\)
\(=\left(a-6\right)^2\)
i) \(x^2-xy+\dfrac{1}{4}y^2\)
\(=x^2-2.x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\)
\(=\left(x-\dfrac{1}{2}y\right)^2\)
e) \(9x^2-24x+16\)
\(=\left(3x\right)^2-2.3x.4+4^2\)
\(=\left(3x-4\right)^2\)
f) \(x^2-3x+\dfrac{9}{4}\)
\(=x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\)
\(=\left(x-\dfrac{3}{2}\right)^2\)
g) \(1-2xy^2+x^2y^4\)
\(=1-2xy^2+\left(xy^2\right)^2\)
\(=\left(1-xy^2\right)^2\)
h) \(\left(2a-b\right)^2+2\left(2a-b\right)+1\)
\(=\left(2a-b+1\right)^2\)
Bài 3:
a) \(A=\dfrac{1}{4}x^2-xy+y^2\)
\(A=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.y+y^2\)
\(A=\left(\dfrac{1}{2}x-y\right)^2\)
Thay x = 2012 và y = 1004 vào A ta được
\(A=\left(\dfrac{1}{2}.2012-1004\right)^2\)
\(A=\left(1006-1004\right)^2\)
\(A=2^2=4\)
b) \(B=9x^2-3xy+\dfrac{1}{4}y^2\)
\(B=\left(3x\right)^2-2.3x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\)
\(B=\left(3x-\dfrac{1}{2}y\right)^2\)
Thay x = 231 và y = 1384 vào B ta được
\(B=\left(3.231-\dfrac{1}{2}.1384\right)^2\)
\(B=\left(693-692\right)^2\)
\(B=1^2=1\)

3) \(A=2017.2019=\left(2018+1\right)\left(2018-1\right)=2018^2-1\)
\(\Rightarrow A< B\)
Bài 1:
a) \(x^2+2y^2+2xy-2y+2=0\)
\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y-1\right)^2+1=0\)
Ta thấy \(VT>0\)
suy ra phương trình vô nghiệm
b) \(x^2+y^2-4x+4=0\)
\(\Leftrightarrow\)\( \left(x-2\right)^2+y^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\y=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy...
Bài 2:
a) \(8y^3-125x^3=\left(2y-5x\right)\left(4y^2+10xy+25y^2\right)\)
b) \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)
c) \(x^4-1=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
Bài 3:
\(A=2017.2019=\left(2018-1\right)\left(2018+1\right)=2018^2-1< 2018^2=B\)
Vậy \(A< B\)

\(\left(9x-1\right)^2-2\left(9x-1\right)\left(5x-1\right)+\left(5x-1\right)^2=\left(9x-1-5x+1\right)^2=\left(14x\right)^2=196x^2\)

a, \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
b, \(y^2-13=\left(y-\sqrt{13}\right)\left(y+\sqrt{13}\right)\)
c, \(\left(x^2-1\right)^2-\left(y+3\right)^2=\left(x^2-1-y-3\right)\left(x^2-1+y+3\right)\)
\(=\left(x^2-4-y\right)\left(x^2+2+y\right)\)
d, \(2x^4-4=2\left(x^4-2\right)\)
e, \(\left(a^2-b^2\right)^2-\left(a^2+b^2\right)^2=\left(a^2-b^2-a^2-b^2\right)\left(a^2-b^2+a^2+b^2\right)\)
\(=-2b^2.2a^2=-4.a^2b^2\)
f, \(a^6-b^6=\left(a^3\right)^2-\left(b^3\right)^2\)
\(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

a) \(x^2+2x+1\)
\(=\left(x+1\right)^2\)
b) \(x^2-6x+9\)
\(=\left(x-3\right)^2\)
c) \(x^2+4x+4\)
\(=\left(x+2\right)^2\)
d) \(x^3+9x^2+27x+27\)
\(=\left(x+3\right)^3\)

a) \(x^2y^2-a^4b^6=\left(xy\right)^2-\left(a^2b^3\right)^2=\left(xy-a^2b^3\right).\left(xy+a^2b^3\right)\)
b) \(4x^2y^4-\left(3xy^2-1\right)^2=\left(2xy^2\right)^2-\left(3xy^2-1\right)^2\)= \(\left(2xy^2-3xy^2+1\right).\left(2xy^2+3xy^2-1\right)\)
= \(\left(-xy^2+1\right).\left(5xy^2-1\right)\)
\(A=2+2^2+2^3+2^4+....+2^{2017}\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5+....+2^{2017}+2^{2018}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5+.....2^{2017}+2^{2018}\right)-\left(2+2^2+2^3+2^4+....+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-2\)
còn câu B bn làm tương tự.